Executable Process Models

Going the Last Mile with Bonita BPM
(Community Edition, Version 7.9)

Joerg Evermann
Memorial University of Newfoundland
July 2019

Please report errors and omissions, send corrections, or offer ideas to
jevermann(@mun.ca

@O0

The copyright to this document rests with the author. This work is licensed under the Creative
Commons Attribution-NonCommercial 3.0 Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, PO Box 1866,
Mountain View, CA 94042, USA.

Page 1

mailto:jevermann@mun.ca

Table of Contents

IEEOAUCTION. ...ttt et s h et a e e bt et e e st s bt e bt e et e e bt et e eatesbe e b e eneeeneeennneas 3
BONIta BPMot b ettt et ettt b ettt et et nae s 3
GLEING STATTEA.eevieeiiieiie ettt ettt ettt et e et et e et e e teeeab e e seeesbeessaeesseensaeensaessseanssaeeanssaeeansseeensssens 5
Data MaAnQ@EMENL.......cc..eiiiiiiiiiie ettt ettt ee et e ettt e et e e st te e s bt e esabeeeabeeesbeesbbeesabbeesabteesasbaeeeseanbbeeeesannnns 6
DIatabas ACCESS. .. eeeurieiiiiiterite ettt ettt et e bt e bt e et b e e a bt e bt ea bt e bt e e ab e e bt e et e e ettt e e eabeeeeeaeee 16
Organizational ManaQ@emMENL.ccuieruieeiiieiieeieeiie et eite e bt estteeteesteeebeesseesbeesseeenseenssesnseesansaeesassseesnns 19
Organizational DEPIOYIMENT.........coiuiiiiiieiiiie et et e et eesteeeseaeeetaeessaeesssaeesnsaeensseeens 26
ProCeSS IMOAEL.....niiieiiee ettt ettt ettt ettt sa ettt et e enee 28
oo To) TR I 4 I 1 T Aot 0) o SO 29
[070] 112 0] B 2 (o) 2SSOSR 33
PrOCESS Dal......eiiiiiiiiie ettt ettt ettt e e e e e tae e e e e 41
Branching CONItIONS.c.viiiieiieiieeiieeeie et ettt e ste et e steebeestteeseessseesaessseesseessseesaessseasseessseeennes 45
IV ESSAZES. .. veeeeurteeeeeitteeeeettee e ettt e e e e tteeeeesateeee e naaeeeeannsaeeeeansseee e e nsaeaeeannbaeeeeanneeaeeeaaannnnnnannaeeaeaaaaeeeens 47
MeSSAZE HANAIING.ooeoiiiiiiie et e et e et e e et e e et eestaeessaeeessseeesennnnanaeeeannes 52
MESSAZE COTTEIATIONS. ... eeeiiiieeeiiieeciieeeetee et e ettt e et e e et e e s beeeebeeeeabeeesaseeesseessseeessseesnssseeeeesnssseeeeannes 58
SCIIPt TASK OPETAtIONS.cciuiieeiiieeiiiieeitiee ettt ettt e etee e st e esteesssteeessaeeesaeeesseeansssaaeeeassssseeeeeesnnsseees 61
USCT INEEITACE. ...ttt ettt e et e et e e e te e e s baeesaaaeesaseeesssaaeassaaesseaessaeenssaeeeeennssnes 68
POOL USET INEEITACE. ...ttt ettt e b e et e b e sateesabeeeeaes 85
RUNEME VATTADIES.c..eiiiiieiiieiieeie ettt ettt et e bt et e et e e bt e eabe e bt e snbeesteeensaeesnseeens 86
| TG D 1S) o) (0% 4015 1L APPSR 90
ProCeSS EX@CULION.iiiiiiiiiiiiiecitet ettt ettt ettt et e st e e et e ebeesane 95

Page 2

Introduction

Bonita BPM is an open-source workflow management system. The community edition is free to
download and contains both a modelling component (based on Eclipse), called Bonita Studio, and the
actual workflow management system, containing the workflow engine, a built-in database for persisting
case information and workflow information, a resource service that manages organizational groups,
roles and members, and other services and interfaces for external services. The workflow engine is built
on a Tomcat web server. The web interface to this component is called the Bonita Portal. Bonita BPM
does not offer the full range of BPMN 2.0 symbols and also has some limitations in the way that
symbols may be used.

This tutorial will guide you through the entire process of developing a BPMN based workflow
application on Bonita. The tutorial is developed using the community edition, Version 7.9. It is assumed
that you have already downloaded and installed the software. This tutorial is based on exercise 10.10 in
the book “Fundamentals of Business Process Management” by Marlon Dumas, Marcello La Rosa, Jan
Mendling and Hajo A. Rijers published by Springer (hereafter called “Fundamentals™).

Bonita BPM

Bonita BPM uses a number of concepts and technologies that go beyond those introduced in
“Fundamentals”. This section will introduce the main ones in order to prepare the reader for the
remainder of the tutorial.

Relational database

Bonita BPM uses a relational database to store case information. Throughout the tutorial, we will make
use of relational data definitions, show how to access the relational database, and use SQL queries to
interact with case data from process activities. While not essential, an understanding of relational
databases and SQL enhances reader understanding.

Java & Groovy

The runtime component of Bonita BPM is written in Java and makes heavy use of Groovy, a “variant”
of the Java language for scripting, value assignments, conditional expressions, etc. The persistent case
data in the relational database is encapsulated in a Java-based persistence layer to run-time access. Run-
time case data is accessed by process activities through Java objects and their methods. While not
essential, an understanding of Java/Groovy enhances reader understanding.

Web-based User Interface

Bonita BPM uses web-based user interfaces to present user activities with case data, case instantiation
forms, and case overview forms to the user. User interfaces are not extensively covered in
“Fundamentals” as this is where WIMS differ most. In Bonita BPM, every user activity has an input
contract that specifies the case data that is used by the activity. Every user activity has a user interface
form associated with it. Bonita BPM provides a web-based interface designer that can create forms
automatically from the contract. The form shows JavaScript variables. These are initialized from case
data when the form is shown, and return to Bonita BPM when the form is submitted. However, these

Page 3

data are not automatically written back to case data upon activity completion. While not essential, an
understanding of JavaScript and CSS enhances reader understanding.

Operations

All types of activities in Bonita BPM can have operations. Operations are used to instantiate case data
objects, delete case data objects, or assign values to attributes of case data objects. The expressions to
calculate values for attributes can be based on SQL queries to the database, use methods of existing
Java case data objects, or use custom Groovy scripts that have access to all case data objects.
Operations are used to write back form inputs to case data objects after user activities complete, but
they can be used in other tasks as well, for example, script tasks, to evaluate a custom Groovy script.
When creating contracts for user activities, Bonita BPM can automatically create the operations
necessary to write back form information to case data.

Pools

Pools in Bonita BPM represent processes, not business parties, as recommended in “Fundamentals”. As
such, the focus on modelling pools in Bonita is on data management and instantiation of process
instances. Case data is specified for each pool and is shared across all lanes in that pool. Pools are
instantiated to create workflow instances (cases) when a start event is reached. At that point, case data
is initialized, using custom initialization scripts, typically in Groovy, to prepare case data.

Page 4

Getting Started

When Bonita is first launched, it presents the Bonita Studio with a welcome tab and a new project
name “My Project”.

-H® G- WAL LD
[& Project explorer 53 B (&) ¥ = O | & welcome to BonitaStudio 5 =0
&My project

» & Organization

Recently Modified

¢ &) Bonita; ..

New Diagram Import a C H
mport ommunity

Videos B Documentation B Training B
» Bonita BPM Camp ("search Documentation) + English
+ Getting started tutorial O + Espanol

+ Bonita Overview
+ Ul Designer deep dive) + Frangais

« Getting Started
+ Bonita BPM 7 Contract . + Private session: contact us

« Process Modeling
Examples B Community B Blog B
+ Expense report « Forums + Jul1,2019- Bonitasoft announces availability of Bonita
« Vacation management « Shared projects Cloud
+ Procurement « Translate In your language + Jun24,2013- Bonitasoft celebrates 10 years!

+ Reportan issue + Jun18,2019- Bonitasoft in the Forrester Wave

+ May 13,201 - Bonita wins a 2019 Stevie

A

Close the welcome tab. Bonita community edition allows only a single project in the workspace.
Rename the project:

» Right-click on the name “My Project” and selecting “Rename...”.
» Enter the new name for the project
» Press “OK”.

Renaming the project may take a few moments.

® Rename

Rename project

LoanApplication

Cancel OK

Page 5

Data Management

Begin by modelling the data perspective of the process. Bonita has a rich data perspective that is based
on the relational data model to describe business objects. Bonita provides a built-in relational database
(based on H2") and a modelling tool that makes it easy to define the business objects.

This tutorial is based on the data description in exercise 10.9 in “Fundamentals”. To make the
modelling easier, the tutorial simplifies the data perspective somewhat and describe the following
business objects that are also found in Fig. 10.12 in “Fundamentals”

* LoanApplication
* Applicant
* Property
* CreditReport
* RiskAssessment
* PropertyAppraisal
Begin the data modelling
» Select “Development” — “Business Data Model” — “Define ...” from the menu.

The following dialog lets you define the different business objects.

1 https://h2database.com/html/main.html

Page 6

x Define Business Data Model

Define Business Data Model

Add Business Objects to the list and edit their details in the right pane tabs.

List of Business Objects Select a Business Object to edit

Name v Description
Add

Delete
Attributes | Unique constraints | Queries | Indexes

Add Name Type Multiple Mandatory
Up
Down

>

Delete

Details

No details available

Package 'com.company.model

Cancel Finish

Because Bonita will automatically create Java class definitions for the persisting and retrieving the
database contents, it prompts you to define a Java package name for these classes, which defaults to
“com.company.model”. You do not need to change this.

» Click the “Add” button on the left to create a new business object.

The name of the business object defaults to “BusinessObject” which you can change by selecting the
name in the list of business objects and overwriting it.

» Name you first business object “Applicant”.

Page 7

. Define Business Data Model

Define Business Data Model

Add Business Objects to the list and edit their details in the right pane tabs.

List of Business Objects Applicant
Name - Description The person applying for a loan |
Add | applicant

Delete
Attributes | Unique constraints | Queries | Indexes
Add Name Type Multiple Mandatory
Details

No details available

Package | com.company.model

Cancel Finish

Next, define attributes for the applicant business object. For each attribute,
» Press the “Add” button next to the attribute list.

This creates a new attribute, by default the names are numbered consecutively and the data types of
attributes are character strings of length 255.

» Click on the attribute name to change it and select an appropriate data type for the attribute.
The following image (next page) shows an example for the applicant business object.

Bonita will create an artificial primary key for each business object called PersistencelD (a long data
type) and allows versioning of the data definition using the PersistenceVersion attribute, which is also
automatically created.

To keep things simple, do not normalize the data schema (for example, by defining an Address business
object and linking this as current and previous address). Also do not use multiple or mandatory
attributes, unique constraints, pre-defined queries and indexes for query performance improvements.
These are advanced data management topics beyond the scope of a process-centered tutorial.

Page 8

Define Business Data Model

Define Business Data Model

Add Business Objects to the list and edit their details in the right pane tabs.

List of Business Objects Applicant
Name - Description The person applying for a loan.
| add |
Delete - - - -
: . Attrlbutes] Unique constrainks | Querles| Indexes|
| Add | | Name Type Multiple = Mandatory
oo = E
firstName STRING | |
 Down | 'homePhone STRING | |
Delete | |cellPhone STRING O O
: * | currentstreet STRING O O
currentStreetNumber {STRING O O
currentCity STRING O O
currentPostal STRING O O
previousStreet STRING O O
> previousStreetNumber STRING | |
previousCity STRING O O
previousPostal STRING O O
previousDuration INTEGER O O
currentEmployer STRING O O
employerStartDate DATE-TIME (NO TIME Z O O
annualSalary FLOAT [L
mainBank STRING O O
Details for name
Length
(255 1w
Use STRING if you need a unique constraint and/or indexes. Its maximum length
depends on your database.
- For longer strings, choose the type TEXT. Database equivalent: varchar
Package | com.company.model

Cancel | Finish |

Exercise 10.9 in “Fundamentals” offers some ideas on attributes for the different business objects.

» Define a business object with attributes for each of the business objects listed above.

Page 9

The following image shows a definition of the risk assessment business object. Of the attributes listed
in exercise 10.9 in “Fundamentals”, the assessment identifier is not required as Bonita will create an
artificial primary key for each business object. Also, the attributes to reference the loan application and
credit history report are not required; below, you will make the link from the loan application to the risk
assessment, credit history report and other objects.

: Define Business Data Model

Define Business Data Model

Add Business Objects to the list and edit their details in the right pane tabs.

List of Business Objects RiskAssessment

Name - Description A risk assessment for a loan application
Add | Applicant
Delete | IREESIENTE

Attributes | Unique constraints | Queries | Indexes

Add Name Type Multiple Mandatory

™. NmEGR _ _E &
2|~

Details For riskwWeight

No details available

Package (com.company.model

Cancel Finish

Page 10

The following image shows the definition of the property appraisal business object. Again, omit
identifiers and references to other business objects.

Define Business Data Model

Define Business Data Model
Add Business Objects to the list and edit their details in the right pane tabs.

List of Business Objects PropertyAppraisal
Name - Description |An appraisal of a property thatis used to secure a loan.

Add | |Applicant

NI PropertyAppraisal

" |RiskAssessment

Attrihutes] Unique ccnstraints| Queries | Indexes|

| Add | | Name Type Multiple Mandatory
Up propertyType STRING O : o
: * |propertystreet {STRING O Ol
 Down | |propertyCity ISTRING O O
Delete | | PropertyPostal ESTRING O O
> : * |marketValue {FLOAT oo]
comments {STRING O O

Details for surroundingValue

No details available

Package |' com.company.model

Cancel |' Finish |

Page 11

The following image shows the definition of the loan agreement. To simplify the tutorial, omit the
digitized copy of the repayment agreement from exercise 10.9 in “Fundamentals”. Bonita provides a
way to manage documents that is separate from the business object data perspective. Alternatively, a
URL to an external file store could be represented by an appropriate attribute.

. Define Business Data Model

Define Business Data Model

Add Business Objects to the list and edit their details in the right pane tabs.

List of Business Objects LoanAgreement
Name - Description An agreement about a loan with an applicant/customer
! Add | |Applicant
N Bl LoanAgreement
. " |PropertyAppraisal Attributes|Uniquemnstraints|Queries|lndexes|
RiskAssessment Add Name Type Multiple Mandatory
Up conditionsAgreed | |
repaymentAgreed {BOOLEAN O O
> Down
Delete

Details For conditionsAgreed

No details available

Package (com.company.model

Cancel Finish

Page 12

The next image shows the definition of a credit report. This is simplified significantly by omitting
normalization of entities such as credit account, credit cards, and by omitting multiple entries of these.

Define Business Data Model

Define Business Data Model

Add Business Objects to the list and edit their details in the right pane tabs.

List of Business Objects

Name hd
| Add | |Applicant
AR 4| CreditReport

LoanApplication
LoanAgreement
PropertyAppraisal
RiskAssessment

Package | com.company.model

CreditReport

Description A report on the credit history of an applicant

Attributes] Unigue ccnstraints| Queriesl Indexesl

L Add | | Name Type
Up financialOfficer
creditAssessment STRING
 Down | | courtJudgmentinformati TEXT
Delete bankruptcylnformation TEXT
. * | creditCardType STRING
creditCardBalance FLOAT
creditCardinterest FLOAT
loanApplicationsLast5Yeé INTEGER
overDueAccount STRING
overDueBalance FLOAT
overDueType STRING
overDuelnterestRate FLOAT
Details For financialOFficer
Length
(255 1 v

Multiple

ODoO0oOoOOoooop

Use STRING if you need a unique constraint and/or indexes. Its
maximum length depends on your database.
For longer strings, choose the type TEXT. Database equivalent: varchar

Mandato

ODoO0oOoOOoooop

Page 13

Cancel

Finish |

Finally, the following image shows our definition of the loan application. This is also simplified, for
example, by omitting detailed address information for the reference and the property.

Define Business Data Model

Define Business Data Model

Add Business Objects to the list and edit their details in the right pane tabs.

List of Business Objects LoanApplication
Name - Description |An application For a loan submitted by an applicant

Add Applicant
Delete | | CreditReport

Attributes | Unique constraints | Queries| Indexes
IF_)oanAgriemen_t . Add Name Type Multiple Mandatory
roper! raisa
Risk[;s:gssprﬁent Up referenceName | | | |
referenceAddress STRING
Down | referenceRelation iSTRING O O
Delete | PropertyType STRING O Ol
propertyAddress STRING O O
purchasingPrice FLOAT O O
loanAmount FLOAT O Ol
loansStartDate DATE ONLY O O
loanYears INTEGER Ol |
) loaninterestType STRING O O
submissionDate DATE-TIME (NO T O |
revisionDate DATE-TIME (NO T| | |
status STRING Ol |
statusComments TEXT O O
eligibility BOOLEAN O O
loanOfFficer STRING O |
insuranceRequired :BOOLEAN O O

Details For referenceName
Length

1255 1|

Use STRING if you need a unique constraint and/or indexes. Its maximum
length depends on your database.
For longer strings, choose the type TEXT. Database equivalent: varchar

Package (com.company.model

Cancel Finish

You will now implement the connections that tie the various business objects to a particular loan
application. You will do this by noting the persistence Id of the applicant, the credit history report, the
property appraisal, the risk assessment and the repayment agreement summary in the loan application.

For this, you will extend the business data model of the loan application business objects by five
attributes of type long, to hold the persistence Ids of each of the associated business objects. Note the
last five attributes of the loan application business object in the following figure (next page).

Page 14

Attributes | Unique consktraints | Queries | Indexes

Add Name Type Multiple

referenceName
referenceAddress STRING
Down | referenceRelation :STRING
Delete | PropertyType STRING
‘| propertyAddress STRING
purchasingPrice FLOAT

Up

loanAmount FLOAT
loanStartDate DATE ONLY
loanYears INTEGER

loaninterestType iSTRING
submissionDate DATE-TIME (NO

revisionDate DATE-TIME (NO
status STRING
statusComments TEXT
eligibility BOOLEAN
loanOfficer STRING
insuranceRequired :BOOLEAN
applicantid LONG
creditReportid LONG

propertyAppraisalld LONG
riskAssessmentld :LONG
loanAgreementid LONG

Do oogodgn

These attributes should never be visible to the user, they should not appear in any user interface form or
activity input contract. However, their value will be set whenever a process activity creates a new
association between business objects.

» Create the additional attributes for the loan application business objects as shown in the figure.
» Press the “Finish” button.

Bonita Studio now deploys the business data model to the Bonita workflow server. This creates tables
in the relational database system as well as the Java classes for retrieving and persisting the information
(DAO, “data access objects”). If you have previously deployed the business data model and have made
changes to attribute data types, Bonita may ask if you want to clear the database. This is highly
recommended.

Bonita will report when this process is finished:

Page 15

™ Business Data Model deployed

6 The Business Data Model has been deployed successfully.

M Open sessions have been closed (portal,applications...). You need to log
backin.

~ More details

Business Data Model deployment steps:

Il Pause BPM services (= closes all open sessions)
< Generate Java entities and DAO from model

s Create/Update database schema

p Resume BPM services

[] Don't show me this message again.

OK

Additionally, the business data model and Java dependencies are added to the project in the Bonita
Studio project:

&5 Project explorer 2

~2 LoanApplication
» & Organization
» | | Business Data Model
» =i Java dependencies

Database Access
At any time, you can gain access to the database and query its contents:

» Select “Development” — “Business Data Model” — “Browse Data (h2 console) ...” from the
Bonita Studio menu.

This opens a page in your web browser that lets you interact with the H2 database.

Page 16

H2 Console - Mozilla Firefox

O] H2 Console

¢ o @ 127.0.1.1 7 N @ &

& | & |) Auocommit “0 7D | Maxrows:| 1000 ~ | @ O | z | Auto complete | Normat v | ()

_] jdbeh2filehomelfjoerg/FreshBo | Run (Ctri+Enter) | | Run Selected (Shift+Enter) || Clear | SQL statement:
= APPLICANT

] CREDITREPORT

E LOANAGREEMENT

E] LOANAPPLICATION

El PROPERTYAPPRAISAL
E RISKASSESSMENT

] INFORMATION_SCHEMA
58 Sequences

i Users

(1) H2 1.3.175 (2014-01-18)

HE

HEHEH

Important Commands

(?) | Displays this Help Page

& Shows the Command History

_Q Executes the current SAL statement

0 Executes the SQL statement defined by the text selection

I} |Disconnects from the database

Sample SQL Script

Delete the table if it exists DROP TABLE IF EXISTS TEST.

Create a new table CREATE TABLE TEST(ID INT PRIMARY KEY,
with 1D and NAME columns| NAME VARCHAR(255));

Add a new row INSERT INTO TEST VALUES(1, Hello');

Add another row INSERT INTO TEST VALUES(2, World');
Query the table SELECT * FROM TEST ORDER BY ID;
Change data in a row UPDATE TEST SET NAME='Hi' WHERE ID=1;
Remove a row DELETE FROM TEST WHERE I1D=2;

Help HELP ...

Adding Database Drivers

Additional database drivers can be registered by adding the Jar file location of the driver to the the environment variables
HZ2DRIVERS or CLASSPATH. Example (Windows): to add the database driver library C/Programs/hsqldb/lib/hsgldb jar, set
the environment variable HZDRIVERS to CJ/Programs/hesgldb/lib/hsqldb jar.

Note the tables corresponding to each business object on the left hand side. You can query the contents
of each table with the appropriate SQL statement.

» Select the APPLICANT table on the left
The H2 console will create a generic SQL select statement for you.

» Press the “Run” button to execute the query as in the following example.

Note the PERSISTENCEID column that is the artificial primary key.

Page 17

|

o |

| Auto commit <0 ‘g |Maxrnws-: 1000 W

o 0 | E |Autnoornplete Mormal v | (2

|_] jdbc:hZfileshomelfjoerg/FreshBo | Run (Ctri+Enter) || Run Selected (Shift+Enter) || Clear | SQL statement:

H H

H H &

H H

= APPLICANT

=] CREDITREPORT

El LOANAGREEMENT

=l LOANAPPLICATION

£l PROPERTYAPPRAISAL
El RISKASSESSMENT

] INFORMATION_SCHEMA

SELECT * FROM APPLICANTl

SELECT * FROM APPLICANT;

PERSISTENCEID |ANNUALSALARY CELLPHOME |CURRENTCITY CURRENTEMPLOYER CURRENTPOSTAL CURRI

(no rows, 14 ms)

Expanding the table name shows all columns, indices, and primary keys defined for the table based on
the business object definition. Note the column PERSISTENCEVERSION that is used to version the
business objects in the database.

= E APPLICANT

[+

HFHHEE

FH FH &

FHFH HH

[+

F &

FH H
NWDJI:HI:IJDJDJDJDJDJI:IJDJI:HI:HIZHI:HI:HDJDJDJDJ

|
—

|

PERSISTENCEID
ANMNUALSALARY
CELLPHOME
CURRENTCITY
CURRENTEMPLOYER
CURRENTPOSTAL
CURRENTSTREET
CURRENTSTREETNUMBER
EMPLOYERSTARTDATE
FIRSTMAME

HOMEPHONE

MAINBANK

NAME
PERSISTENCEVERSION
PREVIOUSCITY
PREVICUSDURATION
PREVIOUSPOSTAL
PREVIOUSSTREET
PREVIOUSSTREETNUMBER
Indexes

/&, PRIMARY_KEY_2

@ Unique

® PERSISTENGCEID

Page 18

Organizational Management

Bonita separates the organizational management of the workflow server from actor specifications in the
BPMN pools and lanes. Organizations are managed on the workflow server by specifying a set of
groups and roles to which individual (human) resources can be assigned. Groups and roles are
independent of each other. Each actor specified for a pool or lane is later mapped to these groups and
roles.

In our simple example, you can look to Figure 10.12 in “Fundamentals” to guide the definition of
organizational resources. You will model the workflow server organization to closely resemble the
actors specified for the pools and lanes so that the mapping between them will be easier.

» Select “Organization” — “Define ...” from the menu.

You can see that the “ACME” organization is predefined. Rather than using this, you will define your
own organization.

@ @ Manage organizations

Manage organizations

Add, edit or remove organizations

Name Description
Add | |ACME (active) iThe ACME organization is an example of a typical hierarchy. It can be used for development.

< Back Next > Cancel Finish

» Select the ACME organization, then push the “Delete” button
» Confirm that you want to delete this organization
» Push the “Add” button to create a new organization.

You can change the default name of “Organization1” by clicking on it and then typing the new name.
You can also provide a short description.

» Change the name of the organization to “Big Bank”

Page 19

: Manage organizations

Manage organizations

Add, edit or remove organizations

Mame Description
Add |

Delete

<Back Next > Cancel Finish

» Make sure the Big Bank organization is selected, then press the “Next > button.

The following dialog box allows you to create organizational groups. For this tutorial, create two
groups, one of Employees and one of Applicants, who will be interacting and carrying out process
activities.

» Use the “Add group” button to create a new group, then
» Set its name and display name on the right in the details fields

To keep things simple, you will not work with subgroups for this tutorial.

: Manage organizations

Organization groups

All available groups of the current organization

| search... | Details

Add group Applicants Name* | Employees

Add subgroup Displayname | Employees

Delete Path |
Description
< Back MNext = Cancel Finish

After you have created the two groups,

> Press the “Next > button

to continue with the definition of roles.

Page 20

Manage arganizations

Organization roles

Allavailable roles of the current organization

[@ search... Details
Add . o Mame *
Role name Displayname Description
Displ

o

Delete yname
Description

< Back MNext > Cancel Finish

You will define four roles, corresponding to the actors for the four lanes in Fig 10.12 in
“Fundamentals”. For each role,

» Push the “Add” button to create a new role, then
» Change its name and display name on the right in the details fields.

Manage organizations

Organization roles

Allavailable roles of the current organization

[Q search... | Details
Name* | FinancialOFficer
Add Role name Displayname Description :
Delete Financialofﬁceé FinancialOfﬁceéAn officerof Biy Displayname | Financial Officer
LoanOfficer Loan Officer An officer of Bi Description |An officer of Big Bank specializing in

PropertyApprai% Properky Appra§ Real estate proj financial evaluation

InsuranceSalesk Insurance Sales; Offers and sells

< Back MNext > Cancel Finish

Page 21

You will also define an additional role for all customers that interact with Big Bank, as they also use
the workflow system to initiate and revise loan applications.

» Create the anonymous customer role as shown below

: Manage organizations

Organization roles

All available roles of the current organization

| Q search... | Details ' \

Name * | AnonymousCustomer |

Add || Role name Displayname Description ; . :

Delete FinancialOfficeéFinancialOfficeéAn officer of Bif = Display name | Anonymous Customer |
~ |InsuranceSalesk Insurance Sales Offers and sells Description [All customers|

LoanOfficer éLoanDﬂ’icer éAnofficerofBi;
PropertyApprai Property Appra; Real estate proj

AnonymousCus Anonymous Cu: All customers

< Back MNext = Cancel Finish

> Push the “Next > button to continue to the definition of users

Page 22

Users represent individuals and their user accounts for the workflow management system. To keep
things simple, you will create only two resources, one that represents a customer, and one that
represents an employee.

< Manage organizations

Organization users

All available users of the current organization

List of users | User information management

[Q search... | Details
Add First name Last name Username ~ Username * | john.doe
Delete Password *
Manage -
€| General | Membership * Personal contact >
Title | Mr, Ms...

First name | John
Last name | Doe

Job title | HR manager, Junior Sales...

< Back Nexk > Cancel Finish

For each user account,

» Push the “Add” button on the left, then
» Change the details on the right of the form as appropriate.

The example in the figure on the next page shows the definition of user Jane Doe with user name
“jane” and some password.

Page 23

: Manage organizations

Organization users

Allavailable users of the current organization

List of users | User information management

| Q search... | Details
Add | | First name Last name Username v Username * | jane |
Delete Password + [~|
Manager =

¢ General Membership* Personalcontact »

Title | Miss |

First name | Jane |

Last name | Doe |

Jobtitle ||

< Back Nexkt > Cancel Finish

For each user account,

» Select the “Membership” tab in the details, and
» Assign this user to the appropriate groups and resources that you defined earlier.

You can assign multiple groups and roles to each user. Note that groups and roles are independent. In
the following example (next page), Jane Doe is a member of all employees who are also loan officers, a
member of all employees who are also financial officers, etc.

Page 24

. Manage organizations

Organization users

All available users of the current organization

List of users| User information management

[Q search... | (Details
ﬁ First name Last name Username v Username*[jane ‘|
Delete Password * [seesees ‘|
Manager | A

€ General Membership * Personal contact >

Group \,fEmployees v | Role | LoanOfficer A X

Group \,iEmployees ~ Role \Financialofficer ~ k3

Group \,P'Employees] Role | PropertyAppraiser ~ x|

Group \,P‘Employees v Role I\ InsuranceSalesRep A X

\Add membership...'

<Back J Nexk > | Cancel J Z\- Finish -'I

» Define the customer user account in a similar way and ensure that this account is in the
applicants group and customers role.

The following figure shows you what the customer account memberships should look like.

: Manage organizations

Organization users

All available users of the current organization

List of users | User information management

| Q search... | Details
_Add || First name Last name Username - Username * | customer |
Sslain gy Jane Doe jane Password * [sseseses]
Customer Customer customer
Manager -

€ General Membership * | Personalcontact Professional contact

Group | /Applicants ~ | Role | AnonymousCustomer -

Add membership...

<Back Next > Cancel | Finish |

Page 25

» Push the “Finish” button to complete the definition of the organizational model on the workflow
management server.

In the Bonita Studio, you will see your organization as part of the current project.

5 Project explorer &3

v LoanApplication
- 7. Organization
<= Big Bank.organization
» | | Business Data Model
» =\ Java dependencies

Organizational Deployment

The organization, as defined just now, needs to be deployed to the Bonita workflow management
server. In Bonita Studio,

» select “Organization” — “Deploy” from the menu.

: Deploy organization

Select an organization to deploy

Select an organization to deploy on the local portal as well as the default user logged

Name ¥ Description

Default username 8

| customer]

Cancel) Deploy

» Select the “Big Bank” organization you have just defined

The default user name is the one that Bonita Studio should use when opening the web portal to the
workflow management server. In our case,

» Specify “customer” as the default user name

The customer will launch initiate the loan application process by completing and submitting a loan
application as the first task.

Page 26

Bonita will acknowledge successful deployment:

™ Deploy information

é Organization Big Bank has been deployed successfully

OK

Page 27

Process Model

To begin describing the process in BPMN, create a new diagram in Bonita Studio.
» Select “File” — “Create new diagram ...” in the menu.

Once the diagram has been created, you can select it in the project view on the left of Bonita Studio.

5 Project explo... 52 | Diagramtree| = O
& ~
~=2 LoanApplication
» & Organization
» | | Business Data Model
~ & Diagrams

% MyDiagram-1.0.proc
» =\ Java dependencies

You can rename the diagram, as well as the pool(s) in the diagram.

» Select the new diagram and right-click and select “Rename ...” to provide a better name for it.

» Name the pool “Loan Provisioning”.

While Fig. 10.12 in “Fundamentals” labels the pool after the organizational unit performing the work
(“loan provider”), Bonita uses the convention that the pool name designates the process, not the
organization, hence you should label it “Loan Provisioning”.

™ Choose a new name and version

Diagram

Name | LoanApplication

Version | 1.0

Pools

Name | Loan Provisioning | Version | 1.0

Cancel OK

The diagram should now show a single pool with a single lane and the beginnings of a process, as in
the following image (next page). Note the palette of BPMN symbols to the left of the drawing area.

Page 28

& LoanApplication (1.0) 2 = 0

4
Ty &
Swimlanes
I
3w Start1
g
Flow el F
sle
- k] 5
Tasks
@ 88 =
B O
Activities
=

Start Events

End Events

® ® e

®0 | O

Text Annotation

—

Pools, Lanes, and Actors

Because we want to model the message passing coordination between the loan application and the loan
provisioning processes that is shown in the collaboration diagram in Fig. 10.12 in “Fundamentals”, you
will add another pool to the diagram.

» Select the pool symbol in the palette, then
» Add a new pool above the loan provisioning.

You can name this new pool in the general properties below the drawing area.

_# General %2 |l Data| ¥ Execution | A Appearance|& Validation status| & Minimap

B
4
1

o

1)
&
Pool 'a?/'
Actors
Name @ Description
Pool1 s
Version
1.0 i

Display name

f not set, name will be used

To rename the pool,
» Push the button with the pencil icon to enable editing of the pool’s name.

» Change the name to “Loan Application”.

Page 29

General 2 | @ Data| ¥ Execution | & Appearance|& Validation status| 9, Minimap
[Loan Application
Pool Pool

Actors
Name 8 Description

Loan Application '

Version
1.0 ¥

Display name 8

The loan provisioning pool has four lanes, one each for the loan officer, the financial officer, the
property appraiser, and the insurance sales rep.

» Select the “Employee lane” pool, and

» In the “Lane” tab in the properties pane, rename the lane to “Loan Officer”

General 22 | B pata| ¥ Execution| & Appearance| & Validation status| &, Minimap
= Loan Officer
Pool Lane

Lane

—— MName [Loan Officer|

Description

Select a new lane from the drawing palette, and
Add the new lane below the “Loan Officer” lane.
Rename the new lane to “Financial Officer”.

Add lanes for the property appraiser and insurance sales rep in the same way.

YV V VY V V

Add a lane to the Loan Application pool. Label this lane “Applicant”.

Page 30

Next, you will assign actors to each pool and lane. Actors in the BPMN diagram are distinct and

separate from the organizational resources you have defined earlier for the workflow server. They will
be mapped to these resources when the process is deployed for execution.

» Select the loan provisioning pool and the “Actor” tab in the properties pane.

_# General 2 | @ Data| ¥ Execution X Appearance| & Validation status ckMinimap
1]

Pool
Actors

Add Name ~ Description

(® Employee actor This is an example of actor that is mapped to any ACME users

Note: when no initiator is set, the process can only be started programmatically

A default actor is already entered here.

» Select the default “Employee actor”, unset it as initiator, and then delete it.
Confirm that you really want to delete this actor. Next,

» Use the “Add” button to add a new actor,

» Rename the default “Actorl” name by selecting it and replacing it with “Big Bank Employee”.
Do not set this actor as initiator.

Next, you will define actors for each lane within the loan provisioning pool.

» Select the loan officer lane, then

» Select the “Actors” tab in the properties pane and press the “Add ...” button

» In the following dialog box, enter the name “Loan Officer” and press finish.

General 2 | [Data| F Execut... | & Appear... @ Vvalidat...|, Minimap| = 8
z -
=
S
Pool L
Lane

Actors Select an actor

Actor filter

Set...

i Add...

Page 31

Add a new actor

Add a new actor

Name * (Loan Officer

Description

Initiator [| Set as initiator

Cancel Finish

» Create new actors for the remaining three lanes in the same way.

» Create a new actor for the loan application pool in the same way.

The actor of the loan application pool will manually initiates the process of applying for a loan. In

contrast, the loan provisioning actors react only to inbound application messages. They should not be
able to instantiate the loan provisioning actors manually.

> Set this actor as initiator

General 2 | B Data| ¥ Execution | & Appearance| & Validation status |, Minimap
[Applicant

Pool Actors
Ackors

Add Name

* Description

Unset initiator O Applicant
Delete

Note: when no initiator is set, the process can only be started programmatically

You must also specify an actor for the Applicant lane in the loan application pool. Select this lane.
Instead of creating a new actor,

» Use the drop-down list to select the “Applicant” actor defined for the loan application pool.
_# General 2 | B Data| JF Execution| & Appearance| & Validation status | Minimap 7 v =0
= Applicant
Pool Actors
Lane
Actors Select an actor | Applicant

Actor filter Set...

Page 32

Control Flow

Next, you will model the process, staying close to Fig. 10.12 in “Fundamentals”.

Examining that figure, you will notice that Bonita does not offer symbols for data objects and data
stores. These can still be added to each task, as you will see later, but are not represented graphically.
Also, when modelling the messages in the collaboration with the applicant pool, Bonita requires these
message connections to originate or terminate at a message event or message task, rather than at the
edge of an opaque (“black”) pool as in “Fundamentals”. Note also that message connections cannot be
drawn graphically, but are added automatically by Bonita once the message details have been specified.

Begin with the basic BPMN elements for the loan officer.

» Model the following process fragment in the Loan Officer lane

Receive B Return
applica:l:ion ko
applicant o

[&
ot
% 5 days Loan application cancelled
& Loan Application Received X Check
| i/pl“:i;\‘l . . = application »

\,_",3/ form

completness
Gateway1 Is Form complete?

Explanation: Because Bonita does not allow using timer events as boundary events on message
receive tasks, as is done in Fig. 10.12 in “Fundamentals”, you will use a sub-process, which is called
Call Action in Bonita, for the activity “Receive updated application”. You will place the message
receiving activity into that sub-process. An interrupting timer event can be added to the call action.

» Continue modelling the process for the financial officer and property appraisers as shown in the
following diagram (next page)

Page 33

E Return
- application to
applicant o

® : [

application cancelled

heck O
Chec :
" =1 application » x jo} e
e o Eligibility -
completness
Is Form complete? rm’ @
”r >
- gcheck Credit . = Assess
History Loan Risk

L

<P P

Gateway? Gate*ma:.ﬁ
- 8 Appraise
Property

Explanation: Use a script task, instead of a service task, for the activity “Assess Loan Risk”, as our
executable process in this tutorial will not have access to an actual credit rating service.

» Continue modelling the next parts of the process for the loan officer and the insurance sales rep,
as shown in the following diagram (next page)

Page 34

& Reject
B application 0 40©

‘ Loan application rejected

<%

:-licar‘l:eligible?
2 Prepare = Checkif Send
acceptance insurance acceptanc
pack requested e pack)
Is insurace requested GCatewayd
L v
2 send home

insurance
quote

| S

» Model the remainder of the process for the loan officer, as shown in the following diagram
(next page)

Page 35

Loan application cancelled

B Motify
cancellatio

n LX)

g Cancel

application

2 verify
repayment
agreement

B notify

i application
Gatewayd

approval o
gan application approved

Explanation: In contrast to Fig. 10.12 in “Fundamentals”, this model contains only one terminating
event “Loan application cancelled” to which the “5 day” boundary timer event, the “2 weeks” boundary
timer event, and the “Notify cancellation” sending activity are connected. This is because the Bonita
does not allow multiple events with the same name.

At this point, you will notice that many of the elements are labelled with a red ‘x’ symbol, indicating
that there are errors in the diagram. You can find out more about these errors in the “Validation Status”
tab of the properties pane below the diagram. You may need to refresh this view to show the most
current information.

_# General |l Data| F Execution | Appearance & Validation status % |Q Minimap =g

| Refresh |

Severity ~ Element Description
i Applicant

i Receive updated application
& Loan Provider

& Loan Provider

) Applicant

) Applicant

) Assess Eligibility

& Prepare acceptance pack

) Verify repayment agreement
cancel application

& Approve application

& Check Credit History

) Appraise Property

Send home insurance quote

You may be missing a start event

The process to call is an expression or has not been found

Ul Designer Form type is selected and no target form is defined For instantiation Form mapping. An autogenerated Form will be used in the development environment ONLY.
Ul Designer Form type is selected and no target Form is defined For overview page mapping. An autogenerated form will be used in the development environment ONLY.

Ul Designer form type is selected and no target form is defined for instantiation form mapping. An autogenerated form will be used in the development environment ONLY.
Ul Designer form type is selected and no target form is defined For overview page mapping. An autogenerated form will be used in the development environment ONLY.

Ul Designer form type is selected and no target form is defined for entry form mapping. An autogenerated form will be used in the development environment ONLY.

Ul Designer Form type is selected and no target form is defined For entry mapping. An ated Form will be used in the development environment ONLY.

Ul Designer form type is selected and no target form is defined for entry form mapping. An autogenerated form will be used in the development environment ONLY.

Ul Designer form type is selected and no target form is defined for mapping. An ated Form will be used in the development environment ONLY.

Ul Designer form type is selected and no target form is defined for y mapping. An ated Form will be used in the development environment ONLY.

Ul Designer Form type is selected and no target form is defined For entry form mapping. An autogenerated Form will be used in the development environment ONLY.

Ul Designer Form type is selected and no target Form is defined For entry form mapping. An autogenerated form will be used in the development environment ONLY.

Ul Designer form type is selected and no target form is defined for entry form mapping. An autogenerated form will be used in the development environment ONLY.

09 0990 0000 QOE

Loan Application Received
Is Form complete?

Return application ko applicant
Receive updated application
sdays

is applicant eligible?

Reject application
2 weeks

does applicant agree?

Notify cancellation
Notify approval

The event must catch a message

Alloutput transitions from a XOR gateway must be default or conditional.

IF you want to continue on several branches, use an inclusive gateway.
No message defined For Return application to applicant

No process to call defined For call activity Receive updated application
The timer must have its condition set

Alloutput transitions from a XOR gateway must be default or conditional.

IFyou want to continue on several branches, use an inclusive gateway.
No message defined for Reject application
The timer must have its condition set

Alloutput transitions from a XOR gateway must be default or conditional.

IF you want to continue on several branches, use an inclusive gateway.
No message defined For Notify cancellation
No message defined for Notify approval

You will now attend to each of these problem issues in turn.

Page 36

First, for each of the three branching exclusive (XOR) gateways, name the flows and indicate the
default flow. To do this,

» Select the default flow from each gateway.

» In the properties pane, provide a name and indicate that it is the default flow.

_# General 2 | Data| ¥ Execution| & Appearance| & Validation status| S, Minimap

= Form complete

General General

Name [Form complete
Description

Default flow

» Do this for all flows from branching exclusive (XOR) gateways.

Your changes should be reflected in the diagram by showing the labels as well as the indications for
default flows.

Next, you will specify the two timer events in the model.
» Select the “5 days” timer event.
» In the properties pane, push the “Edit ...” button to specify the timer.

In the following dialog window,

» Select “Duration” for the type of timer, enter “5” for the number of days, and push the button
“Generate duration expression” to generate the timer condition.

> Push the “Finish” button.

% Edit timer condition

Edit timer condition

Define a timer condition based on a Fixed date or a duration.
Cycle and duration evaluation will starts when the process is enabled.

Timer condition based on a Fixed date @ Duration

Select a duration

Years. 0 + .Months. 0 + .Days. 5 - |+ .Hours. 0 + .Minutes. 0 + Seconds. 0 +

Generate duration expression

‘o

Timer Condition 1 |(5 Days 00:00:00] - | 7

Cancel Finish

» Repeat this for the “2 week” timer, using 14 days as the duration.

Page 37

To specify the details of messages, you need to explicitly model those activities of the applicant that the
applicant will complete on the workflow management system itself. While in a production
environment, these messages may be sent from external systems to start a process instance, for this
tutorial you should assume that applicants create and revise loan applications also on the workflow
management system. Recall that you have created a customer/applicant user account for this purpose.

The applicant initiates the process by submitting a loan application, and may be requested to revise or
edit loan applications to be resubmitted. The applicant also receives rejection, cancellation, and
approval messages.

» Model the following process for the loan application pool.

(=) 2 Revise

_E IncoBlete application returned Revised application submitted
E1b=
=om P
al.L ('\ > 2 Create Loan
&2 Ay Application - @
E < Start1 A\p@cation submitted [/F‘\I >
= . o
s Application rejection received End1
)
\@/ .
Application approval received End3

=Y
) O

Application cancellation received End2

You do not need to provide any further details on the activities of the applicant, as the focus is on the
loan provisioning process.

Page 38

Next, you will specify the details of the call activity “Receive updated application” by creating another

process pool. Bonita will not properly create message connections between pools in separate diagrams,
hence you will create this sub-process pool in the same diagram.

» Select the pool symbol from the drawing symbol palette to the left of the drawing area.

» Create another pool below the loan provisioning pool.

» Rename the pool to “Receive updated application (sub-process)”.

_# General 2 |] Data| FF Execution| & Appearance | & Validation status| G Minimap
D Receive updated application (sub-process)

Pool Pool
Actors
MName 8 Description
Receive updated application (sub-process) 7
Version
1.0 7

Display name &

f not set, name will be used

» Select the “Actors” tab in the properties pane below the diagram.
» Add a new actor to the pool, named “Big bank employee (sub-rpcoess)”.

¥ General 2 |] Data| § Execution| & Appearance| & Validation status| G, Minimap
[Receive updated application (sub-process)
Pool Actors

Actors

Add Name ¥ Description

Set as initiator Big bank employee (sub-process)

Delete

Note: when no initiator is set, the process can only be started programmatically

Next, use the lane symbol from the drawing symbol palette and

» Create a single lane within this pool.

» Name this lane “Loan Officer”, as in the following figure (next page).

Page 39

¥ General 22 | B Data| ¥ Execution | & Appearance | & Validation status| 9, Minimap
I:=]

Pool

Lane

Actors Mame (Loan Officer]

Description

» Model the following sub-process for the loan officer.

e, ® O

Start? Revised loan application received End4

Receive updated application (sub-process)
Loan Officer

Explanation: Beginning the sub-process with a message start activity does not work in this case. In
Bonita, a sub-process with a message start event will be skipped instead of waiting for the message.
Hence, the sub-process must begin with a regular start event so it is instantiated by the parent process’s
call activity. It must then await the message arrival using the intermediate message event.

Explanation: Note also that in Fig. 10.12 in “Fundamentals”, the task “receive update application” is a
message task. Instead, the sub-process simply uses a message event as nothing else needs to be done
other than await the message arrival.

» Select the call activity “Receive updated application” in the loan provisioning pool.
» Select the “Process to call” tab in the properties pane below the diagram.
» From the drop-down list for the name, select “Receive update application (sub-process)”.

You may leave the version blank in order that the latest version of the process definition will be used
when the sub-process is instantiated. Your sub-process definition should look as in the following figure
(next page).

Page 40

¥ General 2 |l Data| ¥ Execution| & Appearance | & Validation status| S Minimap

3 Receive updated application

P— Process to call

Portal
Process ko call Name ||Receive updated application (sub-process)|

Iteration Version i [

Process Data

It is useful to specify the data for each pool before specifying messages, because message sending
activities or events will assemble message content from this data, and message receiving activities or
events will populate this data from message content.

» Select the loan application pool, then select the “Data” tab in the properties pane.

As applicants will work with loan applications and applicant information, you will create two business
variables. Additionally, you will create business variables that hold the loan application ID and the
applicant ID.

> Select the “Add...” button for business variables.

» In the following dialog window, enter “loanApplication” for the name of the variable, and select
the “LoanApplication” business object from the drop-down list.

» Do not enter a default value

2 New business variable

Add a new Business variable to Loan Application

Create a new reference to a Business Object defined in Development > Business Data Model menu

Name * | loanApplication

Description
Business Object * | LoanApplication * | Create a new Business Object...
| Is multiple
Default value j|f | B~|# P

Cancel Finish

Page 41

Explanation: There is no need to instantiate or set an default/initial value for the loan application
variable at the pool level. Instantiation and initialization is done by the task “Create loan application”.
Also, there are many start events in this pool. Each time a start event occurs, a new instance of the
pool’s process and data is created, which would create another instance of the loan application object.
You avoid this by passing the loan application into the new instance as message content.

» Complete this definition by pushing the “Finish” button.

» Repeat this procedure to define a business variable for the applicant data. Do not define a
default/initial value or instantiation for this variable either.

Next, add two process variables that contain the loan application ID and the applicant ID.

» Use the “Add...” button for the process variables to create these. Both of these should have the
long data type, as shown in the following figure

@ @ New variable

Add a new variable to Applicant

Add a new variable

Name * | loanApplicationID

Description
Datatype i | Long ¥ | | List of options...
Default value A e 4

Is multiple i

Finish & Add Cancel Finish

Explanation: The main distinction in Bonita between business and process variables is that of
persistence. Business variables are persisted beyond the execution of the workflow instance, while
process variables are not. Moreover, as you have noticed when creating these variables, business
variables represent business objects defined earlier (for which database tables are created) while
process variables use Java data types and have no corresponding database tables.

Explanation: Bonita Community 7.9 does not send complex business objects as message content. You
will circumvent this problem by sending the Persistenceld of the business object instead, whereupon
the complete object can be read from the database after the message has been received. The
persistencelds of the applicant and loan application object are represented as process variables as they
will become part of the message content of outgoing messages. If it were only for sending messages,
you could omit the process variables and retrieve the values directly from the business objects.
However, more importantly, the process variables will be used to receive message content from
incoming messages.

Page 42

When done, your data definitions for the loan application pool should look as follows:

_# General |l Data 2 | §* Execution | ¥ Appearance| & Validation status |G, Minimap | A |
D Loan Application

Pool variables P00l variables @
Documents Business variables i Process variables i
Larameters Add... | |l applicant— com.company.model.Applicant Add... | |0 applicantid -Long
- W loanApplication — com.company.model.Loan/ . @ loanApplicationld — Long
Remove Remove
Move...

You will also need to model data for the loan provisioning pool. The loan provider also works with
applicant and loan application data, so this pool requires the same business and process variables as the
applicant pool. Additionally, you know from Fig. 10.12 in “Fundamentals” that the loan provider also
works with a risk assessment data object, an agreement summary data object, a credit report data
object, and a property appraisal data object. As these data objects do not need to be transferred by
message passing from or to another pool, you do not require process variables to hold their identifiers.

» Create business and process variables for the loan provisioning pool using the same procedure
as above.

Again, you do not need to provide default/initial value expressions or instantiation.

When done, the business variables for the loan provisioning pool should look as in the following figure.
Additionally, you should have the applicantld and loanApplicationld as for the loan application pool.

¥ General |l Data 2 | ¥ Execution | A Appearance| & Validation status| Q, Minimap
[Loan Provisioning

Pool variables Pool variables

Documents Business variables i

Parameters = N
Add... | |l agreementSummary - com.company.model.LoanAgreement

il applicant - com.company.model.Applicant

i creditReport - com.company.model.CreditReport

Remove i loanApplication - com.company.model.LoanApplication
Wl propertyAppraisal - com.company.model.PropertyAppraisal
i riskAssessment — com.company.model.RiskAssessment

You also need to model data for the loan provider (sub-process) pool. The activity in this pool requires
access to the loan application and the applicant data.

» Model this data in the same way as you have done for the applicant pool.

Page 43

Your data definitions for the loan provider (sub-process) pool should look as follows:

_# General |l Data = | ¥ Execution| & Appearance| & Validation status |2, Minimap M < = 0

[Receive updated application (sub-process)

Pool variables P 0ol variables @
Documents Business variables i Process variables i
_____ Add... | | @ applicant —com.company.model.Applicant Add... | |@ applicantlid -Long
Edit W loanApplication — com.company.model.LoanA Er— @ loanApplicationld - Long
Remove Remove
Move...

Next, note that the decisions for the exclusive (XOR) branching gateways require decision information.
There are three such gateways in the process model. The first checks whether the form is complete, the
second whether applicant is eligible and the third whether the applicant agrees with the repayment plan.

While the decisions can be based on data in the business variables, the model in Fig. 10.12 in
“Fundamentals” contains explicit tasks to create this information (“check application form
completeness™, “assess eligibility”, and “verify repayment agreement”). Therefore, you will model
three boolean (true/false) variables that capture this information as process variables for the loan
provisioning pool. The following image shows the dialog box for defining one of these variables.

» Define all three variables in the same way.

Add a new variable to Loan Provider

Add a new variable

Name* | isFormComplete

Description
Data type 1 | Boolean ¥ | | List of options...
Additional information
Default value |False{ | 7P
| 1s multiple i
Finish & Add Cancel Finish

Page 44

When done, your data definitions for the pool should like as follows. Note that the process variables

also include the loan application identifier and the applicant identifier you have defined to be used for
message passing.

_# General @ Data 3| I Execution | Appearance| & Validation status|Q, Minimap 4 ¥ =0
i}

P
Pool variables @
Documents Business variables i Process variables i
Parameters -
Add... | W agreementSummary —com.company.model.LoanAgreement
- M applicant — com.company.model.Applicant -
it W creditReport - com.company.model.CreditReport —
rRemove | |l loanApplication - com.company.model.LoanApplication
Wl propertyAppraisal - com.company.model.PropertyAppraisa
W riskAssessment - com.company.model. RiskAssessment Move...

Add... | | @ applicantid - Long

@ doesApplicantAgree — Boolean —C
@ isApplicantEligible - Boolean —C
remove | @ isFormComplete ~ Boolean - D
@ loanApplicationld - Long

Finally, add business variables and process variables to the ‘“Receive updated application (sub-
process)” pool. This sub-process works with the applicant and loan application information, so you
model these as business variables. As above, you do not need to provide instantiation and initial value
expressions. You also model the applicantld and loanApplicationld as process variables of type long.

Note that you do not need to provide initial values for the the applicant and loan application. The
process pool will receive these from the inbound message.

» Create data definitions for the sub-process pool to look as follows:

_# General| @ Data 2 | B Execution| & Appearance| & Validation status| Q, Minimap
-

Pool variables

Documents Business variables i Process variables i
Parameters " .
Add... W applicant — com.company.model.Applicant Add... @ applicantld - Long
- W loanApplication - com.company.model.LoanApplication

@ loanApplicationld —Long

Move...

Branching Conditions

With the pool data, in particular the process variables, defined, you can specify the flow conditions
from each of the branching exclusive (XOR) gateways. Select a non-default (conditional) flow. The

properties pane below the diagram allows you to enter a condition expression that determines when the
process will follow this flow.

¥ General X | B Data| & Execution| & Appearance | & Validation status| < Minimap
-+

General

Name Form incomplete

Description

condition © Useexpression Use decision table

i T s P

Page 45

» Use the pencil icon to edit the expression.

» In the following dialog box (next page), select “Variable” in the list of expression types on the

left. Select one of the three boolean process variables you have just created, but do not push the
“OK” button yet.

: Edit expression

Expression type
[comparison Name
TU constant

. @ doesapplicantAgree — Boolean
= Java

@ isapplicantEligible - Boolean

& -
Parameters i isFormComplete - Boolean
[€ Script

i Variable

Add.. Return type |'java.lang.Boolean

Cancel OK

» Select the “Comparison” expression type in the list on the left.
You should see the boolean variable you have selected is now entered.

» Change the comparison expression by adding an exclamation mark (“!”’) before the variable
name (as this is the flow that we wish to follow when the form is NOT complete).

: Edit expression

Expression type Press Cirlt+space to access the autocomplete feature.
Supported operators (!,==,!=,<,>,<=,>=) for variable, parameter, constant.
TU Constank
£ Java

4 Parameters
8 script

@ variable

lisFormComplete

Automatic dependencies resolution

Return type | java.lang.Boolean b

Cancel OK

» Push the “OK” button.

Page 46

Your expression should be reflected in the properties pane for this flow:

¥ General 22 |l Data| ¥ Execution | & Appearance| & Validation status| S Minimap
= Form incomplete

General General

Mame |Form incomplete

Description

erault rirow

cCondition D Use expression Use decision table

i [lisFormComplete R I A

» Do the same for the conditional (non-default) flows from the other two branching exclusive
(XOR) gateways.

Messages

Now that you have specified business and process variables for all pools, you can define messages and
their contents. You will begin with the message that is sent from the loan application pool to the loan
provisioning pool to initiate the loan provisioning.

» Select the end event “Application submitted” in the loan application pool.
» Select the “Messages” tab in the “General” properties pane.
This is where you will define the message that is being sent at this event:

¥ General 2 |l Data| ¥ Execution | & Appearance| & Validation status| S Minimap

Application submitted

General Messages
Portal
Messages Add... type filter text

» Push the “Add ...” button to define a new message.

Page 47

» Specify “Loan Application (initial)” for the message name.

» Select “Loan Provisioning” as the target pool from the drop-down list.

» Select “Loan Application Received” as the target element from the drop-down list.
You will need to transfer the loanApplicationld and the applicantld as message content.

» Push the “Add” button in the message content pane.

» Enter “loanApplicationld” as the content item.

» Select the value field and begin typing “loanApplication”. Bonita will present you with
suggestions that match what you have typed. Select the loanApplicationld process variable from
the list of suggestions.

» Do the same for the applicant ID. Your message definition should look as follows:

Add Message

Amessageis sent to another pool.
Add data here to transfer for use in the target pool

Name* | LoanApplication (initial)

Description
Targetpool* i |[Loan Provisioning] - | & P
Target element* i |[Loan Application Received] |4 P

Message content | Correlation between instances

You can leave message content empty to synchronize instances between two processes.
To select specificinstances, use "Correlation between instances tab".

Content item Value
& loanApplicationid U loanApplicationid
Remove | EAIEHIL] i applicantid

Cancel Finish

> Press the “Finish” button.

Page 48

Your message should now be reflected in the process diagram by a message flow between the two
events.

&)
Incomplete application r
O - g Create Loan 4 @
Application
—' Application submitted
e

Loan Application
Applicant

LoanApplication (ini...

Receive

o

i Loan Application Received A = Check
(=} - . application
s Form

Q

)

completness
Gateway1

Next, you will define the message that is sent from the “Revised application submitted” end event in
the loan application pool.

» Define the message as in the following figure (next page).

Page 49

Add Message

A message is sent to another pool.
Add data here to transfer For use in the target pool

Name * |‘ Loan Application (revised)

Description
Target pool* i |[Receive updated application (sub-process)) .| 7P
Targetelement* i [Revised loan application received) .| 7P

Message content | Correlation between instances

You can leave message content empty to synchronize instances between two processes.
To select specificinstances, use "Correlation between instances tab".

Content item Value
Add) loanApplicationid @ loanapplicationid
Remove applicantid :0 applicantid

Cancel | Finish |

Next, define the message that is being sent from the message activity “Return application to applicant”.

» Define this message as follows

Add Message

A message is sent to another pool.
Add data here to transfer for use in the target pool

Name* | Loan Application (incomplete)

Description
Target pool* i |[Loan Application) -\ &P
Target element* i |(Incomplete application returned) | 7P

Message content = Correlation between instances

You can leave message content empty to synchronize instances between two processes.
To select specific instances, use "Correlation between instances tab".

Conktent item Value
ﬂ, loanApplicationid 0 loanApplicationid
Remove | EIHENRIET i applicantid

Cancel | Finish |

Page 50

» Define the message sent from the message sending activity “Reject application” as follows:

Add Message

A message is sent to another pool.
Add data here to transfer for use in the target pool

Name * |' Loan Application (rejected)

Description
Targetpool* i |[Loan Application) v| 7P
Target element* i (Application rejection received) v &P

Message content | Correlation between instances

You can leave message content empty to synchronize instances between two processes.
To select specificinstances, use "Correlation between instances tab".

Content item Value
Stta loanApplicationid 0 loanApplicationid
Remove applicantid .0 applicantid

Cancel | Finish |

» Define the message from the message sending activity “Notify cancellation” as follows:

Add Message

Add Message

A message is sent to another pool.
Add data here to transfer for use in the target pool

Name * | Loan Application (cancelled)

Description
Targetpool* i [Loan Application) A
Target element * i |[Application cancellation received) - 7P

Message content | Correlation between instances

You can leave message content empty to synchronize instances between two processes.
To select specific instances, use "Correlation between instances tab".

Content item value
LAdd | loanapplicationid : @ loanApplicationid
Remove | EIUEn] i applicantid

Cancel Finish

Page 51

» Finally, define the message sent form the message sending activity “Notify approval” as
follows:

Add Message

A message is sent to another pool.
Add data here to transfer for use in the target pool

Name* |Loan Application (approved)

Description
Target pool* i |[Loan Application] aya.
Target element * i |[Application approval received] v | 7P

Message content | Correlation between instances

You can leave message content empty to synchronize instances between two processes.
To select specific instances, use "Correlation between instances tab".

Content item Value
Add loanApplicationid 0 loanApplicationid
Remove | EISI0Ials) i applicantid

Cancel Finish

Message Handling

You have specified the messages that are being sent. You must now specify what happens when
messages are received. First, upon receipt of a message, you must specify what happens to the message
content. Second, because our messages do not transfer complete business objects, you must add
activities that restore/read the business object from the database, given its identifier. You will begin
with the “Loan Application Received” event in the loan provisioning pool.

» Select the “Loan Application Received” message event, then select the message content pane in
the general tab of the properties panel:

¥ General X | @ Data| ¥ Execution| & Appearance| & Vvalidation status| O Minimap

® Loan Application Received

General Message content
Portal
Message content | Auto-fill]

Add

> Push the “Auto-fill” button.

Bonita will attempt to map message content to business or process variables based on names and
datatypes. As you have named your message content elements the same as your process variables, this

Page 52

automatic mapping works for you. In other cases, use the “Add” button to manually create these
mappings. The generated mappings should look as follows:

_# General 52 | [l Data| F Execution| & Appearance| @ validation status| & Minimap

General
Portal
Message content Auto-fill

o [loanApplicationld o~ &

loanApplicationld v 5P (x

applicantid o~ & applicantid v 5P R

Add

Next, you will need to read/restore the full business object of applicant and loan application after
receipt of the message.

» Insert a script task named “Read information” after the message start event, as follows:.

=

_ 5 days

a

i Loan Application Received '

° ®

3 /

g H
Gateway1

= Fc
= Read
informatio |,
n

» Select this task, then select the “Execution” tab in the properties pane, then select the
“Operations” pane:

General | Data | ¥ Execution 22 | & Appearance| & Validation status|, Minimap
=

Connectors in
Operations
Connectors out Add

Operations in Bonita are data variable assignments that are carried out after a task has completed
execution. In this case, you will specify how to restore the applicant and loan application business
objects.

> Push the “Add” button.

» Select the “Applicant” business variable as the target of the operation.

» Select the edit button (pencil icon) for the expression on the right.

Page 53

You should see the following dialog window:

Expression type Value
JU Constant
& Java
4 Parameters
F Query
[€ Script
@ variable

Return type

java.lang.String v

Cancel 0K

» Select “Query” for the expression type on the left.

Bonita will automatically propose a database query to read the applicant information from the database
based on its persistenceld.

Edit expression

Expression type Select the Business Object and the corresponding query to

TT Constant execute. Set the value for each parameter required by the query.
& Java Business Object Queries
L

Parameters Applicant ~ | | findByPersistenceld v
W Query
[@ script Query content
0 variable SELECTa

FROM Applicant a

WHERE a.persistenceld=:persistenceld

Parameters

Name Value
persistenceld E

Return type (com.company.model. Applicant

Cancel oK

To execute this script, you need to provide where the persistence Id script parameter comes from.

» Select the “Value” column for the persistenceld parameter.

» Set this value to the applicantld process variable

Page 54

: Edit expression

Expression type Select the Business Object and the corresponding query to

7T Constant execute, Set the value for each parameter required by the query.
4 Java

Business Object Queries
d
’ Parameters Applicant ~ | | findByPersistenceld -
[é script Query content
B variable SELECTa
FROM Applicant a
WHERE a.persistenceld=:persistenceld
Parameters
Name Value

persistenceld @ applicantid

Return type (com.company.model.Applicant

Cancel oK

» Push the “OK” button.

The query expression you have specified should be reflected in the list of operations for the activity:
_# General |l Data | ¥ Execution = |A’Appearance‘ @ validation status‘Q\Minimap|

€ Read information

vy =0
— N
Connectors in Operations

Operations

Connectors out C lapplicant Wl v & Takesvalueof |[Applicant.findByPersistenceld W~ 2 (x
Add

» Do the same to retrieve the information of the loan application. The query specification should
look as follows:

. Edit expression

Expression type Select the Business Object and the corresponding query to execute. Set the

7T Constant value for each parameter required by the query.
& Java Business Object Queries
&
fiEaEametens LoanApplication ~ | | findByPersistenceld ~
** Query ;)
& script Query content
0 variable SELECTI

FROM LoanApplication |
WHERE l.persistenceld=:persistenceld

Parameters

Name Value
persistenceld EI loanApplicationid

Return type (com.company.model.LoanApplication

Cancel OK

Page 55

The full list of operations for the task “Read information” should look as follows:

_# General | ll Data | ¥ Execution 52 | & Appearance| @ Validation status| Q Minimap
=

m~--no
Connectors in
Operations
Connectors out v applicant

| RAFe 4 Applicant.findByPersistenceld
loanApplication

L Rt
[Rdke4 LoanApplication.findByPersistenceld
Add

Next, you will specify the message handling for the receive message start event “Incomplete
application returned” in the loan application pool.

» Select the “Incomplete application returned” event, then select the “Message content” panel in
the “General” tab of the properties pane, and push the “Auto fill” button.

The message content should be mapped to process variables as follows:

_# General 52 | [Data| JF Execution | A Appearance| & Validation status|Q Minimap

m~--no
General
Portal
Message content Auto-fill
loanApplicationid

o- loanApplicationid
applicantid

> &2 R
[R4 applicantid
Add

» Include an activity to read the information from the database in the loan application pool, after
the receiving message start event “receive incomplete application”

) 5 HEE 2 Revise
I:/) '— " application : -
Incomplete application returned =

Revised application submitted
—

» Specify the operations for the task “Read information” in the same way as earlier

_# General |l Data | ¥ Execution 2 | & Appearance| & Validation status 3, Minimap
g

v = g
Connectors in

Operations

Connectors out v |applicant

|

Applicant.findByPersistenceld
loanApplication

' RAFAS Nt
I g LoanApplication.findByPersistenceld
Add

» Perform the automatic mapping of message content to process variables for the remaining three

receive message start events in the loan application pool, “application rejection received,”
“application cancellation received,” and “application approval received”.

Because there are no further process activities specified following these message events, you need not
bother reading the updated information from the database.

The intermediate message receive event “revised loan application received” in the receive updated
application (sub-process) pool also requires a mapping of message content to process variables.

» Use the auto-fill feature to perform this mapping.

Page 56

However, rather than reading the information from the database in the sub-process and then passing it

back to the parent activity, you will pass only the applicant Id and loan application Id back to the parent

process and will perform the data updates after the call activity task in the loan provisioning pool is
complete.

» Select the “Receive updated application” call activity.

» Select the “Execution” tab of the properties panel below the drawing area, then select the “Data
to receive” pane

_f General | @ Data | ¥ Execution %% | A Appearance| & Validation status |, Minimap
=

Connectorsin
Data to send
Data to receive
- Add
Operations

Connectors out

» Press the “Add” button to define the data that the call activity receives from the specified sub-
process.

» Map the applicantld and loanApplicationld of the parent and sub-process as follows:

_# General |l Data | ¥ Execution 32 | A Appearance| & Validation status| 3, Minimap

% v =1
a5y

Connectors in @

Data to send Data from called process Data in root process

Data to receive

- applicantld ~ | Assigned to [ppplicantid v
Operations
Connectors out loanApplicationid w | Assignedto [loanApplicationld v %
Add

Next, add a task after the call activity that updates the business variables from the database using the
applicantld and loanApplicationld that is received from the sub-process.

» Insert a script task called “Update info” immediately after the call activity

LoanApplication (ini..."

Receive
= Update * updated
Info

alication Received Check
= ¥ - =1 application
Form
i completness
Gateway1

» Specify the operations for this task as database queries as you have done for the “Read
information” task earlier.

Page 57

The operations should be defined as follows:

_# General |l Data | F Execution 52 | & Appearance| & Validation status| Q Minimap M v =0
=1
Connectors in '2\‘
Operations (An operation updates the value of a variable after an activity is performed. Operations are executed in the order they are listed. A A delete operation must be set on its own, in a dedicated activity. Other)
Connectors out L operations that recreate or update the variable must be handled in a separate activity.
v applicant i~ > Applicant.findByPersistenceld W~ 70 (%
loanApplication i~ > LoanApplication.findByPersistenceld W~ 70 (%

Add

Message Correlations

An important consideration in a collaboration of multiple processes is to ensure that messages are sent
to the right instance of a process. In a typical request/response pattern, as you have modelled here
where the loan provisioning process (message “Loan Application (incomplete)”’) and the loan
application process responds (message “Loan Application (revised)”, to the “receive updated
application (sub-process)” process), you need to ensure that the message is being sent to that instance
of the receive updated application sub-process that was called from the instance of the loan

provisioning process that sent the loan application (incomplete) message to the loan application
process.

You will do this through message correlation, i.e by specifying information that uniquely characterizes
each process instance. In your case, this information is the combination of applicantld and
loanApplicationld. To enable message correlation, you first need to ensure that an instance of the
“receive updated application” sub-process, upon instantiation, is provided with the applicantld and
loanApplicationld of its parent process instance.

» Select the “receive updated application” call activity in the loan provisioning process.

» Select the “Execution” tab and the “Data to send” panel in the properties pane.

_# General | B Data | F Execution ¢ | & Appearance| & Validation status| 3, Minimap
=

Connectorsin

Data to send

- Fetch contract
Data to receive
Operations

Connectors out Add

» Press the “Add” button to specify the data to be passed from the calling to the called process
instance.

» Assign the applicantld of the root process to the applicantld in the called process. Make sure
you select “Assigned to Data” as the type of data sending.

» Assign the loanApplicationld from the root process to the loanApplicationld in the called
process.

Page 58

Your data to send should look as follows:

_# General |l Data ¥ Execution 52 | A Appearance| @ Validation status|Q, Minimap M4 v =8
Receive updated application
.
Connectorsin Data to send @
Data to send
z Fetch contract
Data to receive R
Operations Data from root process Datain called process
Connectors out applicantid| @ ~| # & | Assignedto Data ~ | [applicantid (B2 E
loanApplicationid | @~ # &% |AssignedtoData ~ | [loanapplicationid (B2 E

Add

Next, revisit the message “Loan application (revised)” that is being sent from the “Revised application
submitted” message end event in the loan application pool.

» Select that end event, then select the “Messages” pane in the “General” properties tab.
» Select the message and press the “Edit ...” button.

» In the following dialog window, select the “Correlation between instances” tab:

Add Message

A message is sent to another pool.
Add data here to transfer for use in the target pool

Name* | Loan Application (revised)

Description

Targetpool* i |[Receive updated application (sub-process)) |8 P

Targetelement* i |[Revised loan application received) v | &P

Message content | Correlation between instances

Use correlation if you need to coordinate specific instances of two processes.

i [| Usekey-based correlation

Correlation key Correlation Value
Add
Remove
Up
Cancel Finish

» Tick the checkbox “Use key-based correlation” and set up the two correlation keys as shown in
the following figure (next page)

Page 59

Add Message

A messageis sent to another pool.
Add data here to transfer for use in the target pool

Name* | Loan Application (revised)

Description
Target pool* i |[Receive updated application (sub-process)] v | &P
Targetelement* i [Revised loan application received] | F P
Message content | Correlation between instances
Use correlation if you need to coordinate specific instances of two processes.
i £ Use key-based correlation
Correlation key Correlation Value
Add_| applicantid ﬂ applicantid
rRemove | | loanApplicationid -0 loanApplicationid
Up
Cancel Finish

» Press the “Finish” button to complete the changes.
The corresponding message correlation keys also need to specified for the receive message event.

» Select the intermediate message receive event “Revised loan application received” in the
receive updated loan application sub-process pool.

» In the “General” tab of the properties pane, select the “Correlation” panel.

General 2 |] Data| ¥ Execution | A Appearance| & Validation status| 9, Minimap

© Revised loan application received

Correlation

General
Portal
Message content | Autofill |
Correlation
Add
Remove

» Use the “Auto-fill” button to have Bonita Studio try to derive message correlation information
based on naming and data types of correlation keys and process variables.

Page 60

Alternatively you can use the “Add” button to manually set up message correlation. Your correlations
should map each correlation key to the process variable with the same name, as follows:

General X | @l Data| ¥ Execution | A Appearance | & Validation status| Q, Minimap M v = 8

A
General @
Portal
Message content Auto-fill

Correlation Add applicantid 1@ applicantid

loanApplicationld {0 loanApplicationid

In summary, you have specified that upon sending the message, the two correlation keys are filled with
the values of process variables of the sending instance, and the message is delivered to that instance of
the receiving process where the values match the values of the respective process variables.

Comment: With the correlation keys set up in this way, actually sending the applicant Id and loan
application Id as part of the message is redundant and the message content could be entirely omitted.

Comment: Similarly redundant is the data returned from the sub-process pool to the calling activity,
which you have modelled as applicantld and loanApplicationld. As the “correct” sub-process instance

is targeted by the message, so also the “correct” parent process will advance, which already contains
the applicantld and loanApplicationld.

Comment: Note also that you do not need to set up message correlation for messages being sent to
instances of the loan application pool. This is because the message receiving events are start events and
therefore create another instance of the process. In fact, Bonita Studio does not allow message
correlations to be used with message start events. If you had modelled the loan application process in
greater detail, with proper flow and activities, these message start events would be intermediate
message events and would therefore require correlation between process instances.

Script Task Operations

Your process model has two script tasks that need to provide information for subsequent flow decisions
(“check application form completeness” and “check if insurance requested”). You have already
modelled the flow conditions for the subsequent exclusive (XOR) gateways but so far have not
specified where the variables for these conditions receive their values.

» Select the “check application form completeness” task, then select the “Operations” panel in the
“Execution” tab of the properties pane.

¥ General |l Data | ¥ Execution 32 | A Appearance| & Validation status | Minimap
=1

Connecktors in
Operations
Connectors out Add

An operation in Bonita is an assignment of values to variables after a task completes execution.

Page 61

Press the “Add” button to create a new operation.

Set the target variable to be isFormComplete.

For the expression on the right hand side, press the edit button (pencil symbol) to create the
appropriate script that assigns a value to this variable.

» In the following dialog, select the script expression type in the list on the left.

Edit expression

Expression type Groovy Quick Start

TCConstant Name ' newScriptﬂ | Categories

4 Java)) S —— User defined (0)
¢ parameters | |Select avariable... [@@ffiSelect a provided variable.. N h Bonita (12)

W Query Collection (27)
€] script Number (70)

@ variable String (44)

Others (626)

Functions
| type filter text
Evaluate
Automatic dependencies resolution
Return type | java.lang.Boolean v || Browse...| Documentation
Cancel OK

» Name the script “isFormComplete”.

Next, specify the Groovy expression to use to evaluate whether the form is complete. You have access
to all business and process variables in this script.

» Enter an expression like in the following image that checks whether the main attributes of
applicant and loan application are present and not empty

Edit expression
Expression type

TCconstant Name | isFormComplete

4 Java) } j

4 parameters | |Selectavariable... I ¥ | |selecta provided variable... =2
¥ Query

feturn (applicant.getName()==null?false:!applicant.getName().isEmpty()) &&
(applicant.getFirstName()==null?false:!applicant.getFirstName().isEmpty()) &&
(applicant.getCurrentEmployer()==null?false:!applicant.getCurrentEmployer().isEmpty(})) &&
(loanApplication.getLoanInterestType()==null?false:!loanApplication.getLoanInterestType().isEmpty()) &&
(loanApplication.getPropertyType()==null?false:!loanApplication.getPropertyType().isEmpty()) &&
(loanApplication.getPropertyAddress()==null?false:!loanApplication.getPropertyAddress().isEmpty());

@ variable

Evaluate

Automatic dependencies resolution

Return type |java.lang.Boolean v || Browse...

Cancel OK

Page 62

» Press the “OK” button to finish your expression.

Your expression should be reflected in the operation for the task:

General |l Data | ¥ Execution 22 | & Appearance| & Validation status| Minimap 4 v = 0
2

=
Connectors in ";'?"
Operations
AT isFormComplete o~

isFormComplete() ERA A I
Add

Next, you will deal with the task “check if insurance is requested”. Note that you did not create a
process variable to capture if insurance was requested, as this is directly contained in the loan

application information. Rather than executing a script to fill a process variable, you will use the loan
application information directly in the subsequent decision.

j

—

» Delete the script task “check if insurance is requested” and connect the task “prepare acceptance

pack” directly to the following inclusive gateway.
Select the flow from the inclusive gateway to the task “send acceptance pack”.

In the “Properties” pane of the “General” tab, name this flow “always” and enter the condition
“true”, as shown in the following figure.

General 32 |) Data| ¥ Execution| A Appearance| & Validation status |, Minimap

General

Name |[always

Description

Default Flow

condition © Useexpression Use decision table

i([true Tw| ¢

» Select the flow from the inclusive gateway to the task “send home insurance quote”.

» Name this flow “isRequested” and select the edit button (pencil icon) to edit the condition.

In the following dialog window:

» Select “Java” for the type of expression on the left.

» Select the “loanApplication” business variable in the center list.

» Select the method “isInsuranceRequired()” in the right list, as shown in the following figure.

Page 63

: Edit expression

Expression type
“E Comparison | | Name - | Browse your Java object

~©® LoanApplication
Tt Constant i agreementSummary - com.company.model.LoanAgreement - pp . .
EJava @ isEligibility() -java.lang.Boolean

¢ Parameters W applicant — com.company.model.Applicant "~ sinsuranceRequired() - java.lang.Boolean

B i creditReport — com.company.model.CreditReport
Script

0 variable W propertyAppraisal —com.company.model.PropertyAppraisal

W riskAssessment — com.company.model.RiskAssessment

Return type | java.lang.Boolean |

Cancel OK

» Press the “OK” button to finalize your expression.

The expression should be reflected in the properties of the flow as follows:

General £ ‘ [] Data|F Execution|.@k"Appearance & validation status‘o\ Minimap‘

—+ isRequested

i
General General

Name |isRequested

Description

") Default Flow

condition @ Useexpression () Use decision table

i [loanApplication - LoanApplicati| & + | # &2

There are two further exclusive (XOR) gateways with data-based decisions. You have already modelled
the condition expressions for the outgoing flows. All are based on boolean process variables
(“isApplicantEligible”, “doesApplicantAgree”). However, the values for these variables cannot be
automatically computed by script tasks but will be manually entered in the preceding activities when
the process is executed.

Page 64

The task “Assess loan risk™ is another script task. The purpose of this task is to use the credit history
report to create a risk assessment object. Figure 10.12 in “Fundamentals™ indicates that the task has
access to a risk rules database, which you do not have for our simple tutorial. Instead, you will specify
the risk rules directly in the form of a script.

> Select the task “Assess loan risk”.

» Then select the “Operations” panel in the “Execution” tab of the properties pane.

¥ General B Data ¥ Execution 2 | & Appearance| & Validation status | < Minimap
® Assess Loan Risk

Connectors in Operations

Operations
Connectors out Add

Operations in Bonita are executed after a task has completed execution to update values of business or
process variables.

» Press the “Add” button to create a new operation.
» Select the risk assessment as the target of this operation.

» Click on the assignment operator to change it to “Instantiate with”.

™ select operator

Operator type | Instantiate with b

Cancel OK

Now create the script that instantiates a new risk assessment object and also provides the risk weight
value for this object.

» Click on the edit button for the expression on the right (pencil icon).
In the following dialog box:

» Select “Script” as the expression type.

» Name the script “assessLoanRisk”.

The script has access to all business and process variables and you can define whatever credit risk
evaluation rules you may want. As an example, the following expression adds the overdue balance and

Page 65

the credit card balance from the credit history report, rounds the numbers as appropriate and converts
them to an integer value.

€ Edit expression

Expression type Gr
7T Constant Name | newscript() | Ce
& Java ;) :) m
4 parameters | |Selectavariable... |~ | |select a provided variable... > B
W Query import com.company.model.RiskAssessment C
RiskAssessment newAssessment = new RiskAssessment(); N
@ variabl newAssessment.setRiskWeight((creditReport.getOverDueBalance() + creditReport.getCreditCardBalance()).round().intvalue());

ariable return newAssessment; sl
o]

Evaluate
Automatic dependencies resolution F_l
|t

Return type | com.company.model.RiskAssessment ~ | | Browse...

Cancel OK

D

» Press the “OK” button to close the dialog window.
The script you have created should be reflected in the operation for the task “Assess loan risk”.

Finally, create an operation that assigns the persistenceld of the newly created risk assessment object to
the riskAssessmentld variable of the loan application object.

» Push the “Add” button to create a new operation.
» Select the loan application business variable as target.
» Select “Use a Java method” for the operator type.

» Select the “setRiskAssessmentld(Long)” as that Java method.

™ select operator

Operator type | Usea Javamethod ~

setPropertyType(String) - void
setPurchasingPrice(Floak) - void
setReferenceAddress(String) - voic
setReferenceName(String) - void
setReferenceRelation(string) - voic
setRevisionDate(LocalDateTime) -

@ setStatus(string)-void

@ setStatusComments(String) - void

® setSubmissionDate(LocalDateTime

Cancel oK

Page 66

» Press the edit button (pencil icon) for the expression to determine the value to assign.

» As expression type, select “Java”,
> Select the riskAssessment business variable.

» Select its “getPersistenceld()” method.

Edit expression

Expression type

TT Constant Name Browse your Java object
~® RiskAssessment
: il agreementSummary — com.company.model.| . - :
¥ Parameters ¥ applicant - com.company.model.Applicant getPersistenceld)-java lang.Long
el . ’ ’ ’ . @ getPersistenceVersion()-java.lang.Long
SHET il creditReport — com.company.model.CreditRe . . .
(€ Script il loanApplication — com.company.model.Loan SRaREsVe Gl SiRvalang: Inbeass
@ variable

il propertyAppraisal — com.company.model.Pr

Return type | java.lang.Long |

Cancel | oK |
» Press the “OK” button.
Your expression should be reflected in the operation you have just created:
_# General | B Data | ¥ Execution 2 IR‘Appearance‘ & validation status‘Q\Minimap| M ¥ = 0
& Assess Loan Risk

1 . —_—
Connectors in Operations

@]
Operations
Connectors out

[riskAssessment

|@ ~ | <% Instantiatewith |[assessLoanRisk) B~ s 2|

(%

v
A
v

[loanApplication

| v | & setRiskassessmentid |[riskAssessment - RiskAssessmenti#getPersistenceld | & ~ | # & L

(%

Add

Page 67

User Interface

With most of the process logic in place, it is time to the user tasks. User tasks (as well as pools) are
specified using the concepts of contracts, forms, and operations. A contract is a set of business and
process variables that serves as input to the task. A form is the visual user interface specification that
presents these variables to the user and allows the user to make changes to the data. Finally, as noted
earlier, operations are post-task assignments of values, including assignments from the user interface
variables to business and process variables.

Bonita Studio provides a user interface designer that can automatically create basic forms from contract
information. Bonita Studio can also create basic operations from contract information. For this tutorial,
you will use the automatic generation of forms and operations.

Begin with the user task “Create Loan Application” in the loan application pool.

» Select the task “Create Loan Application”, then select the “Contract” panel of the “Execution”
tab of the properties pane below the diagram area

_# General |l Data | ¥ Execution X | & Appearance | @ Validation status| S, Minimap [= |
8 Create Loan Application
Connectors in Task Inputs

Contract Inputs | Constraints

Form . . .

You can first define business variables and/or documents, and then click on "Add from data...".

It will autematically map contract inputs to data, and create operations to update data with contract values.

Operations
Connectors out

Add from data... | | Name* Type Multiple i Description

Add
Add child

Remove

While you can manually specify the inputs to the task (using the “Add” button), you will instead use
the existing data definitions to do this.

> Press the “Add from data” button

x Add Contract input

Select the data and the action to perform

Select the business variable or document which the contract inputs will be
created as well as the action to perform.

Data (@ Businessvariable Document

Action @ Instantiatei () Editi

il loanApplication — com.company.model.LoanApplication

Input name 'applicantlnput \ of type COMP

< Back Next > Finish & Add Cancel Finish

Page 68

> Make sure that the “Instantiate” action is selected.

» Select the “applicant” business variable, then press the “Next > button to select attributes of
the applicant to be included in the contract

x Add Contract input

Select applicant attributes to add to contract

Choose the fields you want to reuse in your contract.

Select all Attribute name Attribute type Input type Mandatory

Deselect all name STRING TEXT false
firstName STRING TEXT false

Mandatory attributes homePhone STRING TEXT false
cellPhone STRING TEXT false

currentstreet STRING TEXT false

currentStreetNumber STRING TEXT false

currentCity STRING TEXT false

currentPostal STRING TEXT false

More information abouk Contract and Form generation.

From the contract definition, the Studio can automatically generate operations to store or update business variables.
You can then modify these operations if necessary.

© Auto-generate storage operations

) No, thanks. I'll manually define how to use the contract.

<Back Preview > Finish & Add Cancel Finish

» Include all variables, and ask Bonita to automatically generate storage operations.

Storage operations are carried out once a task finishes and are used to write back information from the
user interface form to the business and process variables.

» Press “Finish & Add”.

The same dialog window will appear.
» Select the “loanApplication” business variable
» Select “Instantiate” as the action

> Press “Next >”.

Page 69

In contrast to the applicant information, there are some attributes of the loan application that you would
not want the applicant to fill in. In particular you should un-select the following attributes:

submissionDate eligibility property Appraisalld
revisionDate loanOfficer riskAssessmentld
status applicantld loanAgreementld
statusComments creditReportld

Add Contract input

Select loanApplication attributes to add to contract

Choose the fields you wank to reuse in your contrack.

Select all Attribute name Attribute type Input type Mandatory

Deselect all referenceName STRING TEXT false
referenceAddress STRING TEXT false

Mandatory attributes referenceRelation STRING TEXT false
propertyType STRING TEXT false

propertyAddress STRING TEXT false

purchasingPrice FLOAT DECIMAL false

loanAmount FLOAT DECIMAL false

loanstartDate DATE ONLY DATE ONLY false

loanyears INTEGER INTEGER false

loaninterestType STRING TEXT false

| submissionDate DATE-TIME (NO TIME . DATE-TIME (NO TIME . fFalse

| revisionDate DATE-TIME (NO TIME . DATE-TIME (NO TIME . false

"I status STRING TEXT false

| statusComments TEXT TEXT false

7 eligibility BOOLEAN BOOLEAN false

"I loanOFficer STRING TEXT false

insuranceRequired BOOLEAN BOOLEAN false

"I applicantid LONG TEXT false

| creditReportid LONG TEXT false

_| propertyAppraisalid LONG TEXT false

"I riskAssessmentid LONG TEXT false

| loanAgreementid LONG TEXT false

More information about Contract and Form generation.

From the contract definition, the Studio can automatically generate operations to store or update business variables.
You can then modify these operations if necessary.

© Auto-generate storage operations

(") No, thanks. I'll manually define how to use the contract.

<Back Preview > Finish & Add Cancel Finish

Page 70

» Press the “Finish’ button to complete the addition of variables to this contract.

After the addition of each variable, Bonita informs you that it also has created operations and that no
refactoring is provided. You can verify the input contract by expanding the two entries in the inputs list:

_# General | Data | | Execution 2 A Appearance| & Validation status QMinimap

& Create Loan Application

Connectors in Task Inputs
Contract Inputs | Constraints
Form . . .
= You can first define business variables and/or documents, and then click on "Add from data...".
Operations It will automatically map contract inputs to data, and create operations to update data with contract values.
Connectors out
Add from data... | | Name * Type
Add = loanApplicationinput COMPLEX
referenceName TEXT
referenceAddress TEXT
referenceRelation TEXT
properkyType TEXT
propertyAddress TEXT
purchasingPrice DECIMAL
loanAmount DECIMAL
loanStartDate DATE ONLY
loanears INTEGER
loaninterestType TEXT
submissionDate DATE-TIME (NO TIME ZONE)
revisionDate DATE-TIME (NO TIME ZONE)
status TEXT
statusComments TEXT
eligibility BOOLEAN
loanOfficer TEXT
insuranceRequired BOOLEAN
~applicantinput COMPLEX
name TEXT
firstName TEXT
homePhone TEXT
cellPhone TEXT
currentStreet TEXT
currentStreetNumber TEXT
currentCity TEXT
currentPostal TEXT
previousStreet TEXT
previousStreetNumber TEXT
previouscity TEXT
previousPostal TEXT
previousDuration INTEGER
currentEmployer TEXT
employerStartDate DATE-TIME (NO TIME ZONE)
annualsalary DECIMAL
mainBank TEXT

» Switch to the “Operations” panel to see the generated operations.

Multiple i Description

OO0OC0OO00O00O0OoO0OO0O0O00oOodooOo0o0ooooocoon0onoon

Bonita has generated one assignment operation for each attribute of each of the two business objects.
Examining these operations in detail, the operations use the setter methods for each attribute to change
the values based on the task inputs. You can remove operations for values that you do not want
changed/edited and you can change the expressions on the right hand side if you want more complex

value calculations and assignments.

Page 71

Bonita Studio

CCH P e T REANDE #F2G v
= | # General [Data ¥ Execution }A’Appearance‘@\mlidatiun status‘o\Minimap| s A
B 8 Create Loan Application im|
B | . p—
Connectors in Operations ‘@l
Contract ;) ;) -
P . lapplicant |l * & setMame |[applicantinput.name | B P R
Operations s [applicant J@ v | setFirstName |[applicantinput.firstName | Bl P %
pcennectors oHEN { [applicant |l *~ & setHomePhone [applicantinput.homePhone | B~ & P [gj
2 [applicant |@ ~ | setcellPhone [applicantinput.cellPhone | B~ 2 ni}
s [applicant |@ v | ¥ setcurrentstreet |[applicantinput.currentStreet | B &P {gj
o [applicant |l ~|® setcurrentstreetNumber | [applicantinput.currentStreetNumber | @ ~ | # [gj
s [applicant |@ ~ & setcurrentcity [applicantinput.currentCity | B 7 2 (%]
s [applicant |l v | ¥ setcurrentPostal [applicantinput.currentPostal | @G~ & P [gj
- [applicant |l ~ | & setPreviousStreet [applicantinput.previousStreet | B~ 2 [gj
s [applicant |l v | ® setPreviousStrestMumber |[applicantinput.previousStreetNumber | [v | # ® [i]
{ [applicant |l ~ & setPreviousCity |[applicantinput.previousCity] B~ & P [gj
2 [applicant |@ ~ & setPreviousPostal [applicantinput.previousPostal | B~ s 2 [gj
o [applicant |l v | & setpreviousburation |[applicantinput.previousDuration | B~ 7P {gj
o [applicant]l ~ | & setcurrentemployer |[applicantinput.currentEmployer | B~ P [gj
s [applicant |l ~ & setEmployerstartDate |[applicantinput.employerstartDate] Bv| & P @
{ [applicant |l ~ | & setannualsalary [applicantinput.annualsalary | B~ & P [gj
. [applicant |@ ~ | setMainBank [applicantinput.mainBank | B~ 2 [gj
s [loanApplication |@ v * setReferenceName [loanApplicationinput.referenceName | Bl P %
s [loanApplication |l ~ | & setReferenceaddress |loanApplicationinput.referenceAddress | @ ~ | # [gj
% [loanApplication |l ~ | & setReferenceRelation [loanApplicationinput.referenceRelation | @& ~ | # 2 [i)
o [loanApplication |l v & setPropertyType |[loanApplicationinput.propertyType | B~ & P {gj
s [loanApplication |l ~ &* setPropertyAddress |[loanApplicationinput.propertyAddress | [E | # ® [gj
s [loanApplication J@ v & setPurchasingprice |[loanApplicationinput.purchasingPrice | B~ | 7 & (%]
o [loanApplication |l ~ | & setLoanamount | [loanApplicationinput.loanAmount | B~ & P [gj
- [loanApplication |l ~ | &? setLoanstartDate |[loanApplicationinput.loanStartDate | B~ 2 [gj
s [loanApplication J@ v | setloanvears |[loanApplicationinput.loanYears | Bv| & P [i]

» Switch to the “Form” panel to create the user interface form for this contract.

General |l Data | F Execution = lA"Appearanl:e| & validation 5tatu5|0\ Minimap|
2 Create Loan Application

|
Connectors in Form

Contract .)

Form © ulDesigner () External URL () No form

Operations Target form 9||]) - | 4

Connectors out

If the form has not yet been created, you are recommended to define the contract first.

This will enable generation of a form with the relevant widgets and data bindings for the contract inputs.
If you do not specify a form, a default Form based on the contract is provided for development purposes.
Click the pencil icon to edit the Form, or use the dropdown list to map a different Form.

» Select the “Ul Designer”

» Press the edit button (pencil icon).

Page 72

This will open your web browser with the Ul designer and a new form created from the task inputs.

‘W@ Ul Designer P +

C @ @ localhost:40513/bonita/#/en/pages/newF e noe e =

< 1, FORM EDITOR » Sae a » Preview

© {{ task.displayDescription }}

' -~

+ Loan Application

Reference Name
datatloanApplication.referenceName

Reference Address

datazloanApplication. referenceAddress

Reference Relation i Select an element on the
data:loanApplication. referenceRelation ! whiteboard, then set its

properties here
Property Type

dataloanApplication.propertyType

Property Address

datazloanApplication.propertyAddress
VARIABLES v ASSETS

Name & Value Type &

applicant /{{context.applicant reflink}} External API
context -JAP\/bpmiuserTask/{{taskld}}/context External API
formOutput if(Sdata.loanApplication && Sdata.applicant){ return { /map loanApplication variable to expected ... Javascript expression

loanApplication _J{{contextloanApplication_ref.ink}} External APl

When you select one of the input elements on this form, the property pane on the right will present you
with options for this input element, as shown in the figure on the next page. Note in particular the name
of the JavaScript variable towards the bottom of the list. This is the same name that is used in
specifying the contract and the operations in Bonita Studio. Most of the properties are self-explanatory
and you can change them as required.

Page 73

INPUT

Width ©@

=R TR Ccolumns

CSS classes ©

I

Hidden
= no {@yes

&l

Required &
e N0 f@yes

Value min length &

Value max length &

Read-only
e no @yes

Label hidden
s no @yes

Label

Reference Name

I

Label position

top

Label width
1

Placeholder €

5
c
o
-]

loanApplication.referenceMame %

Type ©®

Page 74

» At the top of the page, name the form “editApplicantApplication”.

» Save it using the “Save” button.

You will re-use this form for other tasks as well.

You can close the web browser window or tab. The form name should be reflected in the “Form” panel
of the “Execution” tab of the properties pane, as shown below:

¥ General |l Data | Execution % | & Appearance| & Validation status| S, Minimap
8 Create Loan Application

Connectors in Form

Contract

Form © Ul Designer External URL No form
Operations

Targek form leditApplicationApplicant

- | F 7
Connectors out

If the form has not yet been created, you are recommended to define the contract First.
This will enable generation of a form with the relevant widgets and data bindings For the contract inputs.

If you do not specify a form, a default form based on the contract is provided for development purposes.
Click the pencilicon to edit the form, or use the dropdown list to map a different form.

In addition to the automatically defined operations, you will need to define two further operations.
Recall that the subsequent message end event sends a message with the applicant Id and the loan

application Id as message content. Both are process variables, and you need to provide values for these
in order for the message sending to be useful.

» Scroll to the end of the operations list, then use the “Add” button to add an additional operation.

» Select the “applicantld” process variable as target.

¥ General | B Data | F Execution 22 | & Appearance| & Validation status |, Minimap
8 Create Loan Application

r=Y
-~

Contract o |lapplicant I R
Form *~ |lapplicantid| o~ | 74
Operations

Connectors out Add

» Use the edit button on the right (pencil icon) to define the expression for this variable.

In the following dialog window:
» Select “Java” as the type of expression on the left
» Select the applicant business variable in the center column

» Select the “getPersistenceld()” method in the right column

Page 75

: Edit expression

Expression type
TT constant Name ~ | Browse your Java object

8 contract input SRS RSGReABReay """

il loanApplication — com.company.model.Loa getAnnualSalary.{] -java.lang..Fl::at
¢ parameters getCellPhone() - java.lang.String
@ Query getCurrentdity() - java.lang.String
[€ script getCurrentEmployer() - java.lang.String
0 variable getCurrentPostal() - java.lang.String

getCurrentsStreet() -java.lang.String
getCurrentStreetNumber() - java.lang.S
getEmployerStartDate() - java.time.Loc,
getFirstName() - java.lang.String
getHomePhone() -java.lang.String
getMainBank() - java.lang.String
getMame() - java.lang.String

@ getPersistenceVersion() -java.lang.Loni

@ getPreviousCity() - java.lang.String

@ getPreviousDuration()-java.lang.Integ

@ getPreviousPostal() -java.lang.String

-]

]

getPreviousStreet() - java.lang.String
getPreviousStreetNumber() - java.lang.

Return type | java.lang.Long |

Cancel OK

» Press the “OK” button to finalize the expression.

» Repeat the same process to create an operation for the loanApplicationld, using the
“getPersistenceld()” method of the loanApplication business variable.

Your two additional operations should look as follows:

_# General |l Data| ¥ Execution 2 ‘A’Appearan(e‘@ Validation status‘O\Minimap| M T =8
R Create Loan Application
===

=

Contract s [applicantid 1@ v ¥ Takesvalueof |[applicant-Applicant#getPersistenceld)
Form ‘ s

“

% N
‘e
(% |

. [t pplicationid]@ v & Tekesvalueof |loanapplication - LoanApplication#getPersistenceld)

<
(%

Operations

Connectors out Add

» Use the same procedure to define the execution properties (contract, form, operations) for the
task “Revise Application” in the loan application pool, but with two differences:

1. Instead of selecting the “Instantiate” action when adding data to the input contract, make sure
you select the “Edit” action.

2. Instead of creating a new form, select the existing form “editApplicantApplication” from the
drop-down list. Your execution properties should look as follows:

Page 76

8 Revise applica

tion

]
Connectors in Task Inputs

Contract Inputs Constraints|

_# ceneral B Data ¥ Execution = IA’Appearance & validation status‘o\ Minimap|

Form
Operations
Connectors out

You can first define business variables and/or documents, and then click on "Add from data...".
It will automatically map contract inputs to data, and create operations to update data with contract values.

| Add from data...| Name*

Connectors out |

If the Form has not yet been created, you are recommended to define the contrack first.

This will enable generation of a Form with the relevant widgets and data bindings for the contract inputs.
If you do not specify a form, a default form based on the contractis provided for development purposes.
Click the pencilicon to edit the Form, or use the dropdown list to map a different Form.

Type Multiple i Description
Add + loanApplicationinput COMPLEX O ;
COMPLEX O
Add child
Remove
General| @ Data | Execution 5| & Appearance| @ Validation status|Q, Minimap| = v =0
R Revise application
Connectors in Operations |@,|
Contract . . . -
= o lloanApplication | W v | # setReferenceName [loanApplicationinput.referenceName | B~ s & (%)
Operations % lloanApplication]l v | & setreferenceAddress |[loanApplicationinput.referenceAddress | B~ s 2 (%
Connectors out r 5 = S
ol pplication |l v * setReferencerelation [(loanApplicationinput.referenceRelation | B~ s & (%)
#* lllaanannlieation Tl v | % catpraneriuTune lnanAnnlicabinninnut nranarhiTune I Rl s 9 (e
¥ General‘. Data IF Execution 2 | & Appearance|& Validation status|Q Minimap|
2 Revise application
F
Connectors in orm
Conktract))
© vl Designer () External URL () No form
Form
Operations _rn - — :
Q Targetform |leditApplicantApplication | A 4

Next, consider the “Appraise Property” task. From Fig. 10.12 in “Fundamentals” you know that
appraise property requires the loan application (which includes the applicant information) as input and

creates a property appraisal as output.

» Select the “Appraise Property” task.

» Select the “Contract” panel in the “Execution” tab of the properties pane.

» Using the same method as above, create a contract in which the loan application, the applicant
and the property appraisal are data inputs to this task:

Page 77

Add Contract inpuk

Select the data and the action to perform

Select the business variable or document which the contract inputs will be created as well as the
action to perform.

Data (@ Businessvariable () Document

Action () Instantiatei @ Editi

il loanApplication — com.company.model.LoanApplication — Default value: init_loanApplication()

#l propertyAppraisal - com.company.model. PropertyAppraisal - Default value: init_propertyAppraisal()
Wl riskAssessment — com.company.model.RiskAssessment — Default value: init_riskAssessment()

il creditReport — com.company.model.CreditReport — Default value: init_creditReport()

= il = . i P

. PR is .

Input name | applicantinput | of type COMPLEX

<Back Next > Finish & Add Cancel | Finish |

» Press the “Next > button.
» On the following dialog, decline the creation of operations.

Applicant information is input only to this task and should not be updated after the task is complete.

Add Contract input

Select applicant attributes to add to contract

Choose the fields you want to reuse in your contract.

Select all Attribute name Attribute type Input type
Deselect all name STRING TEXT
firstName STRING TEXT

More information about Contract and Form generation.

From the conktract definition, the Studio can automati...ate operations to store or update business variables.
You can then modify these operations if necessary.

() Auto-generate storage operations

© No, thanks. I'll manually define how to use the contract.

<Back Preview > Finish & Add Cancel | Finish |

Page 78

Press the “Finish & Add” button.

Do the same for the loan application, also declining the creation of operations. You should de-
select the attributes for applicantld, propertyAppraisalld, loanAgreementld, creditReportld, and
creditReportld. These should never be in any input contract nor should these be visible on any
form.

Press the “Finish & Add” button.
Select the property Appraisal business variable as input.

Ensure you select the “Instantiate” action in order to create a new property Appraisal object.

YV V VY V

Include all its attributes and ask Bonita to auto-generate storage operations for the property
appraisal.

> Press the “Finish” button.

Your contract should like in the following diagram:

¥ General |l Data | ¥ Execution 22 | & Appearance| & Validation status| S, Minimap
£ Appraise Property

Connectorsin | 12sk Inputs

Contract Inputs | Constraints
Form)) .
= You can first define business variables and/or documents, and then click on "Add from data...".
Operations It will automatically map contractinputs to data, and create operations to update data with contract values.
Connectors out
Add from data...| MName* Type Multiple i Description
Add » applicantinput ' COMPLEX O
» loanApplicationinput {COMPLEX O
Add child » propertyAppraisallnput :{COMPLEX O
emove
Your operations should include operations only for the property appraisal:
_# General |l Data ¥ Execution 2% | & Appearance @ Validation status| Q Minimap ¢ v =08
8 Appraise Property
Connectors in Operations @
Contract
Form v propertyAppraisal pe propertyAppraisalinput.propertyType B~ s & x
Operations % |propertyappraisal street |[propertyAppraisalinput.propertystreet ERAE]
Connectors out
C propertyAppraisal propertyAppraisalinput.propertyCity B~ s & x
A llaranarrufanraicsl 1 [¥ cal arfuDack mramarfuAnnraicalinnnk nranarbuDAckal 1 & - ' 3

Page 79

» Create a form for this task using the user interface designer.

» Name the form “propertyAppraisalForm” and set all fields for attributes of the applicant and

loan application to be “read-only”.

7 General‘ B pata |F Execution 52 |A"Appearance‘ & Vvalidation status‘o\ Minimap|

8 Appraise Property

|
Connectorsin Form

Conktract

Form © ulDesigner () External URL () No form

Qasations Target form | [propertyAppraisalForm] A AN 4

Connectors out
— | Iftheform has notyet been created, you are recommended to define the contract first.

Click the pencilicon to edit the Form, or use the dropdown list to map a different Form.

This will enable generation of a form with the relevant widgets and data bindings for the contract inputs.
If you do not specify a form, a default Form based on the contract is provided For development purposes.

Finally, create an operation that assigns the persistenceld of the newly created property appraisal object

to the property Appraisalld variable of the loan application object.

» Push the “Add” button to create a new operation.
» Select the loan application business variable as target.
» Select “Use a Java method” as operator type.

» Select the “setPropertyAppraisalld(Long)” as that Java method:

» select operator

Operator type | Usea Javamethod ~

setLoanYears(Integer) -void
setPersistenceld(Long) - void
setPersistenceVersion(Long) - void
setPropertyAddress(string) - void

setPropertyAppraisalld{Long) - vo’
setPropertyType(String) - void
setPurchasingPrice(Float) - void
setReferenceAddress(String) - voic
setReferenceName(string) - void
setReferenceRelation(String) - voic

Cancel Z OK

Page 80

» Press the edit button (pencil icon) for the expression to determine the value to assign.

» Select “Java” as expression type.
» Select the property Appraisal business variable.

» Select its “getPersistenceld()” method.

: Edit expression

Expression type
T constant Name Browse your Java object
& contract Input ~® PropertyAppraisal

getComments() - java.lang.String

¢ parameters @ getMarketValue() - java.lang.Float

W agreementSummary - com.company.mode
il applicant - com.company.model.Applicant
il creditReport — com.company.model.Credit|

@ Query il loanApplication — com.company.model.Loz lccpersistenceld()-java.lang Long
[Script _ getPersistenceVersion() - java.lang.Lon
@ variable getPropertyCity() - java.lang.String

il riskAssessment — com.company.model.Risk getPropertyPostal() - java.lang.String

getPropertystreet() - java.lang.String
getPropertyType() - java.lang.String
getSurroundingVvalue() - java.lang.Floal

Return type |Jjava.lang.Long |

Cancel OK
13 ED)
» Press the “OK” button.
Your expression should be reflected in the operation you have just created:
_# General |l Data | ¥ Execution 52 | ¥ Appearance & Validation status| A, Minimap M v = 8
8 Appraise Property
- v |lpropertyAppraisal |l ~ | & setPropertyPostal |[propertyAppraisalinput.propertyPostal g~ 7 &KX
Connectors in - - - -
Contract % ||propertyAppraisal |l v | setmarketvalue |[propertyAppraisalinput.marketvalue B~ &2 x
Form z [propertyAppraisal Jll ¥ | & setsurroundingvalue |[propertyAppraisalinput.surroundingvalue] By 7 & x
[+] ki 7 5 7 S
perations % |lpropertyAppraisal |@ ~ | * setcomments [propertyAppraisalinput.comments B~ 72 2 (%
Connectors out —
% lloanapplication |l ~ | &® setPropertyAppraisalid |[propertyAppraisal - PropertyAppraisal#getPersistenceld | & | # &* x

Add

Next, consider the “check credit history” task. Figure 10.12 in “Fundamentals” tells you that the loan

application (which includes the applicant) is input to this task, and the credit history report is output of
this task.

» Create the contract, form, and operations for the task “check credit history”.

Make sure you select the “Instantiate” action for the credit history report and that you create
operations only for the credit history attributes. Also ensure that attributes of the applicant and loan
application are read-only on the user interface form. Finally, do not forget to set the persistenceld of the
new credit history report object in the loan application attribute creditReportld.

Page 81

Next, consider the task “Assess eligibility”. Figure 10.12 in “Fundamentals” tells you that the loan

application (including applicant information), the risk assessment, and the property appraisal are input
to this task, and a possibly changed loan application is output of this task.

» Create the contract, form, and operations for the task “Assess eligibility”.

¥ General |l Data | Execution 52 | ¥ Appearance| & Validation status |, Minimap

2

Connectors in

Contract Inputs| Constraints
Form
5 You can first define and/or ,and then click on "Add from data...".
Operations It will automatically map contract inputs to data, and create operations to update data with contract values.
Connectors out
Add from data... | Name* Type Multiple i Description
Add » loanApplicationinput ECOMPLEX O
+ applicantinput | COMPLEX]
A » riskAssessmentinput ECOMPLEX |
e » propertyAppraisalinput ECOMPLEX]

Because this task assesses eligibility, assume that only the attribute isEligible of the loan

application

can be changed by this task. You need one operation:

_# General| B Data | ¥ Execution X | A Appearance| & Validation status| Q, Minimap ot =B
2

Connectors in ‘/?>‘
Contract

Form ‘loanAppli:ation | loanApplicationinput.eligibility B~ s K
Operations Add

Connectors out

However, the following exclusive (XOR) gateway has flows with conditions that depend on the process

variable isdpplicantEligible. Hence, you need to create an operation for the task “Assess eligibility”
that sets the value of this process variable from the form input.

» Press the “Add...” button to create a new operation.
» Select the process variable isdpplicantEligible as target.

» Select the edit button (pencil icon) to define the expression for this variable.

In the following dialog window:
» Select “Java” for the type of expression.
» Select the loan application variable

» Select the “isEligibility()” access method.

Page 82

Edit expression

Expression type
T Constant Name ~ | Browseyour Java object
B contract Input ~® LoanApplication

il agreementSummary - com.company.mode .
il applicant - com.company.model.Applicant getLoanAmount() -ja\.ra..lang.Flcat .
¥ Parameters il creditReport — com.company.model.Credit] getLoanlnterestType() -java.lang.String
H Query ' : : getLoanOfficer() - java.lang.String
[@ Script il propertyAppraisal — com.company.model.F getLoanStartDate() - java.time.LocalDal
@ variable ' ' ' getLoanYears() - java.lang.Integer

il riskAssessment — com.company.model.Risk
u pany getPersistenceld() - java.lang.Long

getPersistenceVersion() - java.lang.Lom
getPropertyAddress() - java.lang.String
getPropertyType() - java.lang.String
getPurchasingPrice() - java.lang.Float
getReferenceAddress() - java.lang.strin
getReferenceName() - java.lang.String
getReferenceRelation() - java.lang.Strin
getRevisionDate() - java.time.LocalDate
getStatus() -java.lang.String
getStatusComments() - java.lang.String
getSubmissionDate() - java.time.LocalD
isEligibility() - java.lang.Boolean
isinsuranceRequired() -java.lang.Boole

Return type | java.lang.Boolean

Cancel OK

» Press the “OK” button to finalize your expression.

Explanation: You can get the value from the loan application business variable because operations are
executed in the order in which they are specified. This operation is carried out after the loan application
is updated with the form value.

Your operations for the task “Assess eligibility” should look as in the following figure:

_# General | Data | ¥ Execution 8 | A Appearance| & Validation status|Q, Minimap o v =8
R Assess Eligibility

Connectors in Operations @
Contract . - .

= - |lloanApplication |l v ¥ seceligibility (loanApplicationinput.eligibility B~ s & (%
Operations % |isApplicantEligible 1@ ~ | P Takesvalueof |[loanApplication - LoanApplication#isEligibility L~ 5 PR

Connectors out
Add

According to Fig. 10.12 in “Fundamentals”, tasks “Prepare acceptance pack,” “Send acceptance pack,”
and “Send home insurance quote” require only the loan application (with applicant information) as
input, and have no outputs. Therefore, you do not need to create any operations, and can make all form
elements read-only. As all three tasks use the same inputs (and outputs), you can reuse the form that
you create for the first of these.

» Specify input contract and form(s) for these three tasks

Page 83

The task “Verify repayment agreement” requires the loan application (with applicant information) as
input, and produces the agreement summary as output.

» Create contract input, form and operations for task “Verify repayment agreement”.

» Select the “Instantiate” action when adding the loan agreement summary to the input
contract

» Define operations only for the agreement summary attributes, not for the loan application
attributes.

» Create a customized form for this task. Set the loan application and applicant fields to be
read-only.

» Aadd an operation that records the persistenceld of the new loan agreement summary object
in the loanAgreementSummaryld attribute of the loan agreement object.

Next, you need to create an additional operation to set the value of the process variable
doesApplicantAgree which is used in the flow conditions of the subsequent exclusive (XOR) gateway.
The value of this variable should be the conjunction (AND) of the two boolean values of the repayment
summary business variable.

» Use the “Add” button to create an additional operation.
» Select the process variable “doesApplicantAgree” as target.

» Select the edit button (pencil icon) to create an expression for the value to assign to this
variable.

In the following dialog window,
» Select “Script” as the type of expression
» Name the expression and enter the script as follows:

] Edit expression

Expression type Groovy Quick Start

70 constant Name | determineAgreement| Categories
& contract Input |User defined o) |
o i o H T e
4 Java Select avariable... ~ | |select a provided variable... ~ Bonita (12)
¢ Parameters # return agreementSummary.isConditionsAgreed() &% agreementSummary.isRepaymentAgreed(); Collection (27)
W Query Number (70)
[# script String (44)
@ variable Others (626)
Evaluate Functions
Automatic dependencies resolution type filter text
Return type | java.lang.Boolean ~ | | Browse...
Cancel oK Documentation

» Push the “OK” button to complete the expression.

Page 84

The “determineAgreement” script should be reflected in the list of operations for the task, shown in the
following figure:

_# General |l Data | F Execution X | A Appearance & validation status|Q, Minimap o v =0

Connectors in
Contract

Form [pareementsummary -l

agreementSummarylnput.conditionsAgreed B~ 7 2 (%

Operations. agreementsummary

> <> ¢

| R4 agreementsummarylnput.repaymentAgreed @~y ¢ & (%
doesApplicantagree g~ &

Connectors out
determineAgreement B~ 74 & (%
Add

The two final tasks “Cancel application” and “Approve application” both have the loan application
(with applicant information) as input and output and also require the agreement summary as input. Here
too, the form you create for one task is reusable for the other task. You can assume that only the status
and comments on the status of the loan application can be updated by these tasks.

» Create input contracts, forms, and operations for tasks “cancel application” and “approve
application”

Your list of operations will look as follows and your form should have all other fields as read-only.

_# General | @ Data | IF Execution % | & Appearance & Validation status| Q| Minimap

a

Connectors in
Contract

Form v “Oal‘lAppli(ation "Bk
Operations -~

loanApplicationinput.status B~ 72 (X

loanApplication i~|2

loanApplicationinput.statusComments CRAN ANk 3
Connectors out

Add

Pool User Interface

Pools in Bonita can have user interfaces just as user tasks do. In fact, pools have an input contract as
well. However, in your process, variables are instantiated by task operations and you not require the
user to provide any values when the process in a pool is instantiated. In fact, only the loan application
pool process should be directly instantiated by the user. The loan provisioning pool is instantiated by a
message and the receive updated application (sub-process) pool is instantiated by the call activity.

» Select the loan application pool.
» Select the “Instantiation form” panel of the “Execution” tab in the properties pane.

» Use the Ul designer to create a new instantiation form.

This is the same procedure as forms for user tasks. Because the input contract is empty (there are no

inputs specified for instantiating this pool), the default form simply provides a “submit” button. You do
not need to make any changes for this tutorial.

» Name the form “loanApplicationStartForm” and save it.

Page 85

¥ General | B Data | ¥ Execution 52 | & Appearance | & Validation status |G Minimap
[Loan Application

T T Instantiation form

Contract
Instantiation Form © VUl Designer External URL No Form

Overview page Target form |IoanApplicationStartForm v | &P
Connectors out

If the form has not yet been created, you are recommended to define the contract first.

This willenable generation of a form with the relevant widgets and data bindings for the contract inputs.
If you do not specify a form, a default form based on the contract is provided for development purposes.
Click the pencilicon to edit the form, or use the dropdown list to map a different Form.

Because the loan provisioning pool’s process is not instantiated by a user but by a message, no form is
required.

» Select the loan provisioning pool.
» Select the “Instantiation form” pane in the “Execution” tab of the properties pane.
» Set it to “No form”

General |l Data | I Execution % | & Appearance| & Validation status|Q, Minimap
[Loan Provisioning

ek Instantiation form

Contract

Instantiation Form Ul Designer External URL @ No form
Overview page (

This process will be instantiated programmatically (by a call activity or by an API call from an application, For example), so no form is necessary.
When "No form" is selected, no default instantiation form is generated for testing.

IF you have defined a contract and want to use the default form for testing, choose the Ul Designer option but do not specify a form.

Connectors out

» Do the same for the receive revised application (sub-process) pool.

Runtime Variables

There are various situations where data should be updated automatically based on runtime variables.
For example, the loan application contains an attribute loan officer which should be updated with the
name of the loan officer who dealt with this application first (or last). Similarly, the credit history report
has an attribute for the name of the financial officer. The values for these variables can be retrieved
from runtime variables that Bonita maintains during process instance execution. The following is a
useful Bonita runtime function using runtime variables:

BonitaUsers.getUser(apiAccessor,taskAssigneeld) .userName;

The function returns the user name of the resource that is assigned to the task. Other attributes of a user
are the firstName, lastName, title, jobTitle, managerUserName, and managerUserld.

» Select the task “Assess eligibility”

» Select the “Operations” panel in the “Execution” tab in the properties pane.

» Press the “Add” button to add an operation.

Page 86

» As target, select the loan application business variable.

» Change the operation type by clicking on “Takes value of”:

Operator type | Takes value of hd

Cancel oK

» In this dialog box, select “Use a Java method”.

» In the following dialog box, select “setLoanOfficer(String)” as the Java method to use.

This should be reflected in the new operation:

_# General | @ Data | ¥ Execution % | & Appearance| & Validation status|Q Minimap v =0
8 Assess Eligibility

Connectorsin | OPerations

Contract

Form loanApplication
Operations

B~ |2 seteligibility

loanApplicationinput.eligibility
isApplicantEligible

Connectors out

> <> <

B~ s &

plication -L
loanApplication

&~ s 2

Add

1% (% (%

» Use the edit button on the right (pencil icon) to edit the expression for creating the value for the
parameter for that method.

In the dialog window that follows:
» Select “Script” for the type of expression.

» Name the expression “userName”.

» Enter the script as in the following figure (next page).

Page 87

B3 Edit expression
Expression type

Groovy Quick Start

Tt Constant Ramel| UserName) Categories

& contract Input : i)) - - . User defined (0)
4 Java Select a variable... ~ | |select a provided variable... ~ Bonita (12)

¢ Parameters return BonitaUsers.getUser(apiAccessor,taskAssigneeId).firstName + Collection (27)

W Query " + BonitalUsers.getUser(apiAccessor,taskAssigneeld).lastName;| Number (70)

8 Script string (44)

0 variable Others (626)

Functions

' type Filter text

Documentation
A Bonita APl should only be used For read only calls in groovy scripts. Evaluate

Automatic dependencies resolution

Return type | java.lang.String v Browse...

Cancel OK

» Press the “OK” button to finish the expression.

» Do the same for the task “Check credit history” to set the name of the financial officer in the
credit history report in that task’s operations.

The loan application also contains the submission and the revision date. Both of these should be
automatically set after the tasks “Create loan application” and “Revise application” complete.

» Select the task “Create loan application”.

» In the “Operations” panel of the “Execution” tab of the properties pane, find the operation that

sets the value for the attribute “submissionDate”.
Click on the edit button (pencil icon) to adapt the script.

Change the script and its name as follows (next page)

Page 88

B Edit expression

Expression bype Groovy Quick Start
JU Constant el now ‘ Categories
4 Java Select avariable... ~ | |selecta provided variable... | ~ Bonita (12)
¢ Parameters java.time.LocalDateTime.now(); Collection (27)
¥ Query Number (70)
String (44)
@ variable Others (626)
Evaluate
Functions
Automatic dependencies resolution -
type Filcer text
Return type ’java.time.LocalDateTime - | Browse...
Cancel | oK

Documentation

» Do the same for the task “Revise application” and the operation to set the revision date.

At this point, the process specification is complete. Select the “Validation status™ tab in the properties
pane and press the “Refresh” button. You will see a number of warnings:

_# General |l Data ¥ Execution | Appearance & Validation status % |Q, Minimap = g
Refresh
Severity ¥ Element Description
& Loan Provisioning Ul Designer Form type is selected and no target form is defined for overview page mapping. An autogenerated form will be used in the development environment ONLY.
& Loan Application Ul Designer Form type is selected and no target form is defined for overview page mapping. An autogenerated form will be used in the development environment ONLY.
& Receive updated application (sub-process) Ul Designer Form typeis selected and no target form is defined for overview page mapping. An autogenerated form will be used in the development environment ONLY.
& Isinsurace requested An output default flow should be defined for Is insurace requested

One warning is for the lack of a default flow from the inclusive (OR) gateway. The desired process
flow requires conditions on both flows (one of which is the constant ‘true’) but no condition can be a
assigned to a default gateway, our process demands. In fact, Bonita activates the default flow from an

inclusive gateway only when no other flow is activated; it behaves the same as an exclusive gateway,
which is not what we require for this process.

The remaining three warnings concern the lack of an overview page. Overview pages provide
information about running and archived cases in the Bonita Portal. They can show current values for
business and process variables, and information about completed and activated tasks. For this tutorial,
you can rely on the default forms that Bonita provides for testing the process.

Page 89

Process Deployment

Once the process model is specified, it needs to be deployed to the Bonita workflow management
server. The primary work involved in this is the mapping of actors specified for the BPMN pools to
resources declared on the workflow management server. This mapping is part of process

“configuration”.
In Bonita Studio,
» Select the Loan Application pool.
» In the menu, select “Server” — “Configure”.

» In the following dialog window, select “Actor mapping” in the list on left side.

Local configuration for Loan Application (1.0)

Configuration of Loan Application (1.0)
1, Actor Applicant is not mapped to any group, role, membership or user

Actor mapping

&
CTEEIEE Define the actor mappings using an existing organization
Applicant— Not mapped Groups

Roles
Memberships

Users

Import actor mapping file... | | Export actor mapping as File...

| Display advanced configuration Cancel Finish

There is only one actor defined for this pool, the applicant, and Bonita tells you it is not yet mapped to
any resource in the Big Bank organization that you defined and deployed on the server earlier.

» Select the “Applicant” actor, then press the “Groups ...” button.

» In the following dialog window, select the Applicants group in the Big Bank organization.

Page 90

Select groups

Choose which groups to map for this actor

Select an organization | Big Bank -
Group -
/Applicants
_| JEmployees

Cancel Z Finish

» Press the “Finish” button to complete this mapping.
» Press the “Roles ...” button to further select a role.

» In the following dialog window, select the “Anonymous Custonmer” role.

Select roles

Choose which roles to map For this actor

Select an organization | Big Bank -

Role name -

~ AnonymousCustomer

| FinancialOFfficer

_l InsuranceSalesRep
| LoanOfficer

| PropertyAppraiser

Cancel ﬁ Finish

» Press the “Finish” button to complete this mapping.

Page 91

The mappings you have created for the Applicant actor to the group and role should be reflected in the
dialog window:

. Local configuration for Loan Application (1.0)

Configuration of Loan Application (1.0)

Define the actor mappings using an existing organization

4 Actor mapping Actor mapping

&
RSN Define the actor mappings using an existing organization

~ & Groups —
/Applicants Roles...

~ ~ Roles -

AnonymousCustomer Memberships...
Users...

Import actor mapping file... | | Export actor mapping as file...

) Display advanced configuration Cancel ~ Finish

» Press “Finish” to complete the mapping for this process.

» Use the same procedure to map all actors for the remaining two pools.

Page 92

The actor mapping for the loan provisioning pool process should look as follows:

Local configuration For Loan Provisioning (1.0)

Configuration of Loan Provisioning (1.0)

Define the actor mappings using an existing organization

4 Actor mapping Actor mapping

d
RS Define the actor mappings using an existing organization

Groups..
- & Groups -
JEmployees L Roles... J
¥ Loan Officer
~ & Groups \Memberships...'
JEmployees
~ “ Roles
LoanOfficer
~ Financial Officer
~ & Groups
JEmployees
~ ~ Roles
FinancialOfficer
~ Property Appraiser
~ & Groups
JEmployees
~ ~ Roles
PropertyAppraiser
~ Insurance Sales Rep
~ & Groups
JEmployees
~ ° Roles
InsuranceSalesRep

Users...

Imporkt actor mapping file... | | Export actor mapping as file...

[Display advanced configuration Cancel I Finish |

Page 93

The actor mapping for the receive revised loan application (sub-process) pool should look as in the
following image:

Local configuration for Receive updated application (sub-process) (1.0)

Configuration of Receive updated application (sub-process) (1.0)

Define the actor mappings using an existing organization

[SFNGIANE L Actor mapping

o
ReRREES Define the actor mappings using an existing organization

- Big bank employee (sub-process) Groups...

~ & Groups } i
JEmployees I Roles... |
~ ° Roles -
LoanOfficer \Memberships...)

Users...

Import actor mapping file... | | Export actor mapping as file...

(] Display advanced configuration Cancel Finish

Page 94

Process Execution

To launch the process on the Bonita workflow management server and to log into the Bonita Portal to
work with the process, its cases, and tasks:

» Select the loan application pool in the BPMN diagram.

» In the menu, select “Server” —- “Run”.

Bonita Studio will deploy the latest versions of all processes to the workflow management server, and
will open a browser window where the default user for that organization is logged in to Bonita Portal.
The portal page will show the instantiation form that you have defined for the pool.

In your case, you may have defined a form with only a “Submit” button as the pool instantiation form.

loanApplicationStartForm - Mozilla Firefox

& loanApplicationStartFo. X
C @ @) localhost e v I 0 ® » =

» Press the “Submit” button to create a new instance of the loan application process.

You will be taken to the task list where the first task is already selected and its user interface form is
shown on the right side of the page.

% Bonita Portal - Mozilla Firefox

? New Tab

& Bonita Portal

< [CIEA] @ localhost: w no e e =
UBO""‘&SO“ Welcome: Customer Customer e User ‘ Settings
< Filters > Form Comments Overview 2 ,,'
. proces -
Myt a Create Loan Application
Done tasks
Loan Application
Tasklist G Reference Name
1-1/1
— Reference Address
AL Taskname Process name Due date
Create Loan Application Loan Application
Reference Relation
1-1/1

Property Type

house

Property Address

Page 95

You cannot interact with the task (that is, its form) unless you accept (“take”) the task. When you
mouse over the form, Bonita Portal will offer you a button to take the task. Alternatively, select the task
in the task list on the left, and select the “Take” action.

After you have taken the task, you can interact with the form and provide required values. Notice that
some values are required (indicated by a little star next to the form label), and some values are
prepopulated based on the initialization script for the loan application and applicant business variables.
Fill in all required values and press the “Submit” button.

The customer’s loan application process is finished after this task.
» Log out of the portal on the top right.

You will be taken to the Bonita Portal log in page.

Bonita Portal - Mozilla Firefox

{& Bonita Portal x e

& c @ @ localhost .o w mn » =

Welcome to Bonita Portal

Login form

(13

jane
@

Bonitasoft :

LOGIN

» Log in with the user name “Jane” and the password you have specified for this user when you
defined the organization.

Page 96

You will be presented with Jane’s worklist, which contains two tasks for same case, “Appraise
Property” and “Check Credit History”.

Bonita Portal - Mozilla Firefox

& Bonita Portal x g
& c @ localhost e o noe & =
i Welcome: Jane Doe ~ User ¥ Settings
(s Bonitasoft O uer - | sormg
(Filters > Form Comments Overview & ,{'
To do Process Case
To fill out the form, you need to take this task. This means you will be the only
My tasks l | ‘ Q one able to do it. To make it available to the team again, release it. & TAKE
Done tasks
Task list G Name
1-2/2 B
- First Name
L Taskname ~ Process name Due date
Appraise Property Loan Provisioning
Home Phone
Check Credit History Loan Provisioning - EEEEEER
Cell Phone
1-2/2

You defined Jane as the only employee of Big Bank and had assigned all four roles within Big Bank to
Jane. Consequently, she is able to perform tasks in any of the four lanes of the loan provisioning pool
and she is the only one able to perform that work. In a realistic environment, you would define multiple
users with specialized roles.

Both tasks contain the relevant information that was entered by the customer/applicant in the earlier
task. Upon taking and completing both tasks, Jane will be offered the task “Assess Eligibility”. After
taking this task, note that the risk assess attribute value is the sum of the credit card balance and the
overdue balance. Recall that this is what you specified for the script task “Assess loan risk”,
demonstrating that this task has been executed.

Page 97

Bonita Portal - Mozilla Firefox

{ Bonita Portal x o
&« c o @ localhost e bk n a9 & =
QBUnjtasﬂﬂ Welcome: Jane Doe ¥ e User ¥ | Settings
(Filters) Form Comments Overview & ,{'
To do Process Case Risk Assessment
Risk Weight
My tasks o Q
8000 =
Done tasks
Property Appraisal
Task list G Property Type
1-1/1 house
L Taskname ~ Process name Due date Property Street
Main street
A Assess Eligibility Loan Provisioning
Property City
1-1/1 Big city

Property Postal

985745

Accept this task and check the box “Eligibility” to indicate that the applicant is eligible to receive a
loan for this loan application. The next task on Jane’s work list is “Prepare acceptance pack™. After you
take and complete this task, “Send acceptance pack” will be in the work list, and, depending on
whether you ticked the box “Insurance required”, the task “Send home insurance quote” may also be in
the work list. After completing these tasks, “Verify repayment agreement” will be in the work list.
Depending on whether box conditions in the agreement summary are checked (true), the final user task
in the process is either “Notify Cancellation” or “Notify Approval”.

You may also want to play through the process with an incomplete loan application to ensure that the
process properly handles revision of incomplete applications.

You may also wish to play through ineligible applications or applicants not agreeing with the
repayment terms to ensure the process handles these cases properly.

Finally, to test the timers, you should set them to a shorter duration, on the order of minutes, so that
testing can be done quicker.

Page 98

Appendix: Importing and Deploying the BOS Archive File

The completed process model, data definitions, and organizational definitions are also provided as a
BOS archive file, the project export format of Bonita Studio. BOS archives can be easily imported into
a new installation of Bonita.

After you have installed Bonita Community edition,
» Select “File” — “Import” — “BOS archive ...” from the menu
» Select the “LoanApplication.bos” archive file
» Press the “OK” button to begin the import

Import BOS archive

Import BOS archive

Import .bos file (6.x and above) from another Bonita Studio

Select file
[home/joerg/LoanApplication.bos Browse...

(Bos archive to import: LoanApplication.bos (7.9.0)

Cancel Impork

After a little while and a number of import operations, Bonita Studio will report successful import:

™ Import status

Import successfully completed.
€ BDM has been imported and deployed.

Copy to clipboard OK

Note: Should Bonita warn of any conflicts during import, select to overwrite any existing files.

Next, you must deploy the Big Bank organization defined in this project to the workflow management
server and provide a default user name for the Bonita Portal.

» Select “Organization” — “Deploy ...” from the menu

Page 99

In the following dialog window:
» Select the “Big Bank™ organization
> Enter “customer” for the default user name

» Press the “Deploy” button

Deploy organization
Select an organization to deploy

select an organization to deploy on the local portal as well as the default user logged

Name ¥ Description

ACME (active) ETheACME organization is an example of a typical hierarchy. It can
A bank that provides loans

Default username 8

| customer]

Cancel Deploy

Bonita will acknowledge successful deployment of the organization:

® Deploy information

6 Organization Big Bank has been deployed successFully

OK

You are now ready to run the process (see the above section on executing the process)

Page 100

